--- license: apache-2.0 --- ## Model Description Master is a collection of LLMs trained using human-collected seed questions and regenerate the answers with a mixture of high performance Open-source LLMs. **Master-Yi-9B** is trained using the ORPO techniques. The model shows strong abilities in reasoning on coding and math questions. **Quantized Version**: [Here](https://huggingface.co/qnguyen3/Master-Yi-9B-GGUF) **Master-Yi-9B-Vision**: **Coming Soon** ![img](https://huggingface.co/qnguyen3/Master-Yi-9B/resolve/main/Master-Yi-9B.webp) ## Prompt Template ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user What is the meaning of life?<|im_end|> <|im_start|>assistant ``` ## Examples ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630430583926de1f7ec62c6b/E27JmdRAMrHQacM50-lBk.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630430583926de1f7ec62c6b/z0HS4bxHFQzPe0gZlvCzZ.png) ## Inference Code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "vilm/VinaLlama2-14B", torch_dtype='auto', device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B") prompt = "What is the mearning of life?" messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, temperature=0.25, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` ## Benchmarks Nous Benchmark: | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |---------------------------------------------------|------:|------:|---------:|-------:|------:| |[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)| 43.55| 71.48| 48.54| 41.43| 51.25| ### AGIEval ``` | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |35.83|± | 3.01| | | |acc_norm|31.89|± | 2.93| |agieval_logiqa_en | 0|acc |38.25|± | 1.91| | | |acc_norm|37.79|± | 1.90| |agieval_lsat_ar | 0|acc |23.04|± | 2.78| | | |acc_norm|20.43|± | 2.66| |agieval_lsat_lr | 0|acc |48.04|± | 2.21| | | |acc_norm|42.75|± | 2.19| |agieval_lsat_rc | 0|acc |61.34|± | 2.97| | | |acc_norm|52.79|± | 3.05| |agieval_sat_en | 0|acc |79.13|± | 2.84| | | |acc_norm|72.33|± | 3.12| |agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47| | | |acc_norm|42.72|± | 3.45| |agieval_sat_math | 0|acc |52.27|± | 3.38| | | |acc_norm|47.73|± | 3.38| Average: 43.55% ``` ### GPT4All ``` | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |54.95|± | 1.45| | | |acc_norm|58.70|± | 1.44| |arc_easy | 0|acc |82.28|± | 0.78| | | |acc_norm|81.10|± | 0.80| |boolq | 1|acc |86.15|± | 0.60| |hellaswag | 0|acc |59.16|± | 0.49| | | |acc_norm|77.53|± | 0.42| |openbookqa | 0|acc |37.40|± | 2.17| | | |acc_norm|44.00|± | 2.22| |piqa | 0|acc |79.00|± | 0.95| | | |acc_norm|80.25|± | 0.93| |winogrande | 0|acc |72.61|± | 1.25| Average: 71.48% ``` ### TruthfulQA ``` | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |33.05|± | 1.65| | | |mc2 |48.54|± | 1.54| Average: 48.54% ``` ### Bigbench ``` | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|54.74|± | 3.62| |bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43| |bigbench_disambiguation_qa | 0|multiple_choice_grade|40.31|± | 3.06| |bigbench_geometric_shapes | 0|multiple_choice_grade|30.36|± | 2.43| | | |exact_str_match | 2.23|± | 0.78| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|26.00|± | 1.96| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.00|± | 2.87| |bigbench_movie_recommendation | 0|multiple_choice_grade|35.00|± | 2.14| |bigbench_navigate | 0|multiple_choice_grade|58.40|± | 1.56| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|61.80|± | 1.09| |bigbench_ruin_names | 0|multiple_choice_grade|42.41|± | 2.34| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|31.56|± | 1.47| |bigbench_snarks | 0|multiple_choice_grade|55.25|± | 3.71| |bigbench_sports_understanding | 0|multiple_choice_grade|69.37|± | 1.47| |bigbench_temporal_sequences | 0|multiple_choice_grade|27.70|± | 1.42| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|14.69|± | 0.85| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.00|± | 2.87| Average: 41.43% Average score: 51.25% ``` OpenLLM Benchmark: | Model |ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|Average| |---------------------------------------------------|---:|--------:|----:|---------:|---------:|----:|------:| |[Master-Yi-9B](https://huggingface.co/qnguyen3/Master-Yi-9B)|61.6| 79.89|69.95| 48.59| 77.35|67.48| 67.48| ### ARC ``` | Task |Version| Metric | Value | |Stderr| |-------------|------:|--------------------|-------------|---|------| |arc_challenge| 1|acc,none | 0.59| | | | | |acc_stderr,none | 0.01| | | | | |acc_norm,none | 0.62| | | | | |acc_norm_stderr,none| 0.01| | | | | |alias |arc_challenge| | | Average: 61.6% ``` ### HellaSwag ``` | Task |Version| Metric | Value | |Stderr| |---------|------:|--------------------|---------|---|------| |hellaswag| 1|acc,none | 0.61| | | | | |acc_stderr,none | 0| | | | | |acc_norm,none | 0.80| | | | | |acc_norm_stderr,none| 0| | | | | |alias |hellaswag| | | Average: 79.89% ``` ### MMLU ``` | Task |Version| Metric | Value | |Stderr| |----------------------------------------|-------|---------------|---------------------------------------|---|------| |mmlu |N/A |acc,none | 0.7| | | | | |acc_stderr,none| 0| | | | | |alias |mmlu | | | |mmlu_abstract_algebra | 0|alias | - abstract_algebra | | | | | |acc,none |0.46 | | | | | |acc_stderr,none|0.05 | | | |mmlu_anatomy | 0|alias | - anatomy | | | | | |acc,none |0.64 | | | | | |acc_stderr,none|0.04 | | | |mmlu_astronomy | 0|alias | - astronomy | | | | | |acc,none |0.77 | | | | | |acc_stderr,none|0.03 | | | |mmlu_business_ethics | 0|alias | - business_ethics | | | | | |acc,none |0.76 | | | | | |acc_stderr,none|0.04 | | | |mmlu_clinical_knowledge | 0|alias | - clinical_knowledge | | | | | |acc,none |0.71 | | | | | |acc_stderr,none|0.03 | | | |mmlu_college_biology | 0|alias | - college_biology | | | | | |acc,none |0.82 | | | | | |acc_stderr,none|0.03 | | | |mmlu_college_chemistry | 0|alias | - college_chemistry | | | | | |acc,none |0.52 | | | | | |acc_stderr,none|0.05 | | | |mmlu_college_computer_science | 0|alias | - college_computer_science | | | | | |acc,none |0.56 | | | | | |acc_stderr,none|0.05 | | | |mmlu_college_mathematics | 0|alias | - college_mathematics | | | | | |acc,none |0.44 | | | | | |acc_stderr,none|0.05 | | | |mmlu_college_medicine | 0|alias | - college_medicine | | | | | |acc,none |0.72 | | | | | |acc_stderr,none|0.03 | | | |mmlu_college_physics | 0|alias | - college_physics | | | | | |acc,none |0.45 | | | | | |acc_stderr,none|0.05 | | | |mmlu_computer_security | 0|alias | - computer_security | | | | | |acc,none |0.81 | | | | | |acc_stderr,none|0.04 | | | |mmlu_conceptual_physics | 0|alias | - conceptual_physics | | | | | |acc,none |0.74 | | | | | |acc_stderr,none|0.03 | | | |mmlu_econometrics | 0|alias | - econometrics | | | | | |acc,none |0.65 | | | | | |acc_stderr,none|0.04 | | | |mmlu_electrical_engineering | 0|alias | - electrical_engineering | | | | | |acc,none |0.72 | | | | | |acc_stderr,none|0.04 | | | |mmlu_elementary_mathematics | 0|alias | - elementary_mathematics | | | | | |acc,none |0.62 | | | | | |acc_stderr,none|0.02 | | | |mmlu_formal_logic | 0|alias | - formal_logic | | | | | |acc,none |0.57 | | | | | |acc_stderr,none|0.04 | | | |mmlu_global_facts | 0|alias | - global_facts | | | | | |acc,none |0.46 | | | | | |acc_stderr,none|0.05 | | | |mmlu_high_school_biology | 0|alias | - high_school_biology | | | | | |acc,none |0.86 | | | | | |acc_stderr,none|0.02 | | | |mmlu_high_school_chemistry | 0|alias | - high_school_chemistry | | | | | |acc,none |0.67 | | | | | |acc_stderr,none|0.03 | | | |mmlu_high_school_computer_science | 0|alias | - high_school_computer_science | | | | | |acc,none |0.84 | | | | | |acc_stderr,none|0.04 | | | |mmlu_high_school_european_history | 0|alias | - high_school_european_history | | | | | |acc,none |0.82 | | | | | |acc_stderr,none|0.03 | | | |mmlu_high_school_geography | 0|alias | - high_school_geography | | | | | |acc,none |0.86 | | | | | |acc_stderr,none|0.02 | | | |mmlu_high_school_government_and_politics| 0|alias | - high_school_government_and_politics| | | | | |acc,none |0.90 | | | | | |acc_stderr,none|0.02 | | | |mmlu_high_school_macroeconomics | 0|alias | - high_school_macroeconomics | | | | | |acc,none |0.75 | | | | | |acc_stderr,none|0.02 | | | |mmlu_high_school_mathematics | 0|alias | - high_school_mathematics | | | | | |acc,none |0.43 | | | | | |acc_stderr,none|0.03 | | | |mmlu_high_school_microeconomics | 0|alias | - high_school_microeconomics | | | | | |acc,none |0.86 | | | | | |acc_stderr,none|0.02 | | | |mmlu_high_school_physics | 0|alias | - high_school_physics | | | | | |acc,none |0.45 | | | | | |acc_stderr,none|0.04 | | | |mmlu_high_school_psychology | 0|alias | - high_school_psychology | | | | | |acc,none |0.87 | | | | | |acc_stderr,none|0.01 | | | |mmlu_high_school_statistics | 0|alias | - high_school_statistics | | | | | |acc,none |0.68 | | | | | |acc_stderr,none|0.03 | | | |mmlu_high_school_us_history | 0|alias | - high_school_us_history | | | | | |acc,none |0.85 | | | | | |acc_stderr,none|0.02 | | | |mmlu_high_school_world_history | 0|alias | - high_school_world_history | | | | | |acc,none |0.85 | | | | | |acc_stderr,none|0.02 | | | |mmlu_human_aging | 0|alias | - human_aging | | | | | |acc,none |0.76 | | | | | |acc_stderr,none|0.03 | | | |mmlu_human_sexuality | 0|alias | - human_sexuality | | | | | |acc,none |0.78 | | | | | |acc_stderr,none|0.04 | | | |mmlu_humanities |N/A |alias | - humanities | | | | | |acc,none |0.63 | | | | | |acc_stderr,none|0.01 | | | |mmlu_international_law | 0|alias | - international_law | | | | | |acc,none |0.79 | | | | | |acc_stderr,none|0.04 | | | |mmlu_jurisprudence | 0|alias | - jurisprudence | | | | | |acc,none |0.79 | | | | | |acc_stderr,none|0.04 | | | |mmlu_logical_fallacies | 0|alias | - logical_fallacies | | | | | |acc,none |0.80 | | | | | |acc_stderr,none|0.03 | | | |mmlu_machine_learning | 0|alias | - machine_learning | | | | | |acc,none |0.52 | | | | | |acc_stderr,none|0.05 | | | |mmlu_management | 0|alias | - management | | | | | |acc,none |0.83 | | | | | |acc_stderr,none|0.04 | | | |mmlu_marketing | 0|alias | - marketing | | | | | |acc,none |0.89 | | | | | |acc_stderr,none|0.02 | | | |mmlu_medical_genetics | 0|alias | - medical_genetics | | | | | |acc,none |0.78 | | | | | |acc_stderr,none|0.04 | | | |mmlu_miscellaneous | 0|alias | - miscellaneous | | | | | |acc,none |0.85 | | | | | |acc_stderr,none|0.01 | | | |mmlu_moral_disputes | 0|alias | - moral_disputes | | | | | |acc,none |0.75 | | | | | |acc_stderr,none|0.02 | | | |mmlu_moral_scenarios | 0|alias | - moral_scenarios | | | | | |acc,none |0.48 | | | | | |acc_stderr,none|0.02 | | | |mmlu_nutrition | 0|alias | - nutrition | | | | | |acc,none |0.77 | | | | | |acc_stderr,none|0.02 | | | |mmlu_other |N/A |alias | - other | | | | | |acc,none |0.75 | | | | | |acc_stderr,none|0.01 | | | |mmlu_philosophy | 0|alias | - philosophy | | | | | |acc,none |0.78 | | | | | |acc_stderr,none|0.02 | | | |mmlu_prehistory | 0|alias | - prehistory | | | | | |acc,none |0.77 | | | | | |acc_stderr,none|0.02 | | | |mmlu_professional_accounting | 0|alias | - professional_accounting | | | | | |acc,none |0.57 | | | | | |acc_stderr,none|0.03 | | | |mmlu_professional_law | 0|alias | - professional_law | | | | | |acc,none |0.50 | | | | | |acc_stderr,none|0.01 | | | |mmlu_professional_medicine | 0|alias | - professional_medicine | | | | | |acc,none |0.71 | | | | | |acc_stderr,none|0.03 | | | |mmlu_professional_psychology | 0|alias | - professional_psychology | | | | | |acc,none |0.73 | | | | | |acc_stderr,none|0.02 | | | |mmlu_public_relations | 0|alias | - public_relations | | | | | |acc,none |0.76 | | | | | |acc_stderr,none|0.04 | | | |mmlu_security_studies | 0|alias | - security_studies | | | | | |acc,none |0.78 | | | | | |acc_stderr,none|0.03 | | | |mmlu_social_sciences |N/A |alias | - social_sciences | | | | | |acc,none |0.81 | | | | | |acc_stderr,none|0.01 | | | |mmlu_sociology | 0|alias | - sociology | | | | | |acc,none |0.86 | | | | | |acc_stderr,none|0.02 | | | |mmlu_stem |N/A |alias | - stem | | | | | |acc,none |0.65 | | | | | |acc_stderr,none|0.01 | | | |mmlu_us_foreign_policy | 0|alias | - us_foreign_policy | | | | | |acc,none |0.92 | | | | | |acc_stderr,none|0.03 | | | |mmlu_virology | 0|alias | - virology | | | | | |acc,none |0.58 | | | | | |acc_stderr,none|0.04 | | | |mmlu_world_religions | 0|alias | - world_religions | | | | | |acc,none |0.82 | | | | | |acc_stderr,none|0.03 | | | Average: 69.95% ``` ### TruthfulQA ``` | Task |Version| Metric | Value | |Stderr| |--------------|-------|-----------------------|-----------------|---|------| |truthfulqa |N/A |bleu_acc,none | 0.45| | | | | |bleu_acc_stderr,none | 0.02| | | | | |rouge1_acc,none | 0.45| | | | | |rouge1_acc_stderr,none | 0.02| | | | | |rouge2_diff,none | 0.92| | | | | |rouge2_diff_stderr,none| 1.07| | | | | |bleu_max,none | 23.77| | | | | |bleu_max_stderr,none | 0.81| | | | | |rouge2_acc,none | 0.38| | | | | |rouge2_acc_stderr,none | 0.02| | | | | |acc,none | 0.41| | | | | |acc_stderr,none | 0.01| | | | | |rougeL_diff,none | 1.57| | | | | |rougeL_diff_stderr,none| 0.93| | | | | |rougeL_acc,none | 0.46| | | | | |rougeL_acc_stderr,none | 0.02| | | | | |bleu_diff,none | 1.38| | | | | |bleu_diff_stderr,none | 0.75| | | | | |rouge2_max,none | 33.01| | | | | |rouge2_max_stderr,none | 1.05| | | | | |rouge1_diff,none | 1.72| | | | | |rouge1_diff_stderr,none| 0.92| | | | | |rougeL_max,none | 45.25| | | | | |rougeL_max_stderr,none | 0.92| | | | | |rouge1_max,none | 48.29| | | | | |rouge1_max_stderr,none | 0.90| | | | | |alias |truthfulqa | | | |truthfulqa_gen| 3|bleu_max,none | 23.77| | | | | |bleu_max_stderr,none | 0.81| | | | | |bleu_acc,none | 0.45| | | | | |bleu_acc_stderr,none | 0.02| | | | | |bleu_diff,none | 1.38| | | | | |bleu_diff_stderr,none | 0.75| | | | | |rouge1_max,none | 48.29| | | | | |rouge1_max_stderr,none | 0.90| | | | | |rouge1_acc,none | 0.45| | | | | |rouge1_acc_stderr,none | 0.02| | | | | |rouge1_diff,none | 1.72| | | | | |rouge1_diff_stderr,none| 0.92| | | | | |rouge2_max,none | 33.01| | | | | |rouge2_max_stderr,none | 1.05| | | | | |rouge2_acc,none | 0.38| | | | | |rouge2_acc_stderr,none | 0.02| | | | | |rouge2_diff,none | 0.92| | | | | |rouge2_diff_stderr,none| 1.07| | | | | |rougeL_max,none | 45.25| | | | | |rougeL_max_stderr,none | 0.92| | | | | |rougeL_acc,none | 0.46| | | | | |rougeL_acc_stderr,none | 0.02| | | | | |rougeL_diff,none | 1.57| | | | | |rougeL_diff_stderr,none| 0.93| | | | | |alias | - truthfulqa_gen| | | |truthfulqa_mc1| 2|acc,none | 0.33| | | | | |acc_stderr,none | 0.02| | | | | |alias | - truthfulqa_mc1| | | |truthfulqa_mc2| 2|acc,none | 0.49| | | | | |acc_stderr,none | 0.02| | | | | |alias | - truthfulqa_mc2| | | Average: 48.59% ``` ### Winogrande ``` | Task |Version| Metric | Value | |Stderr| |----------|------:|---------------|----------|---|------| |winogrande| 1|acc,none | 0.77| | | | | |acc_stderr,none| 0.01| | | | | |alias |winogrande| | | Average: 77.35% ``` ### GSM8K ``` |Task |Version| Metric |Value| |Stderr| |-----|------:|-----------------------------------|-----|---|------| |gsm8k| 3|exact_match,strict-match | 0.67| | | | | |exact_match_stderr,strict-match | 0.01| | | | | |exact_match,flexible-extract | 0.68| | | | | |exact_match_stderr,flexible-extract| 0.01| | | | | |alias |gsm8k| | | Average: 67.48% Average score: 67.48% ```