File size: 4,906 Bytes
89ce6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import tensorflow as tf
import os
from utils import *
from AUGAN import AUGAN
from ops import *
import time

parser = argparse.ArgumentParser(description="")
parser.add_argument(
    "--dataset_dir", dest="dataset_dir", default="bdd100k", help="path of the dataset"
)
parser.add_argument(
    "--experiment_name",
    dest="experiment_name",
    type=str,
    default="bdd_exp",
    help="name of experiment",
)
parser.add_argument("--epoch", dest="epoch", type=int, default=20, help="# of epoch")
parser.add_argument(
    "--epoch_step",
    dest="epoch_step",
    type=int,
    default=10,
    help="# of epoch to decay lr",
)
parser.add_argument(
    "--batch_size", dest="batch_size", type=int, default=1, help="# images in batch"
)
parser.add_argument(
    "--train_size",
    dest="train_size",
    type=int,
    default=1e8,
    help="# images used to train",
)
parser.add_argument(
    "--load_size",
    dest="load_size",
    type=int,
    default=286,
    help="scale images to this size",
)
parser.add_argument(
    "--fine_size",
    dest="fine_size",
    type=int,
    default=256,
    help="then crop to this size",
)
parser.add_argument(
    "--ngf",
    dest="ngf",
    type=int,
    default=64,
    help="# of gen filters in first conv layer",
)
parser.add_argument(
    "--ndf",
    dest="ndf",
    type=int,
    default=64,
    help="# of discri filters in first conv layer",
)
parser.add_argument(
    "--n_d", dest="n_d", type=int, default=2, help="# of discriminators"
)
parser.add_argument(
    "--n_scale", dest="n_scale", type=int, default=2, help="# of scales"
)
parser.add_argument(
    "--gpu", dest="gpu", type=int, default=0, help="# index of gpu device"
)
parser.add_argument(
    "--input_nc", dest="input_nc", type=int, default=3, help="# of input image channels"
)
parser.add_argument(
    "--output_nc",
    dest="output_nc",
    type=int,
    default=3,
    help="# of output image channels",
)
parser.add_argument(
    "--lr", dest="lr", type=float, default=0.0002, help="initial learning rate for adam"
)
parser.add_argument(
    "--beta1", dest="beta1", type=float, default=0.5, help="momentum term of adam"
)
parser.add_argument(
    "--which_direction", dest="which_direction", default="AtoB", help="AtoB or BtoA "
)
parser.add_argument("--phase", dest="phase", default="test", help="train, test")
parser.add_argument(
    "--save_freq",
    dest="save_freq",
    type=int,
    default=1000,
    help="save a model every save_freq iterations",
)
parser.add_argument(
    "--print_freq",
    dest="print_freq",
    type=int,
    default=100,
    help="print the debug information every print_freq iterations",
)
parser.add_argument(
    "--L1_lambda",
    dest="L1_lambda",
    type=float,
    default=10.0,
    help="weight on L1 term in objective",
)
parser.add_argument(
    "--conf_lambda",
    dest="conf_lambda",
    type=float,
    default=1.0,
    help="weight on L1 term in objective",
)
parser.add_argument(
    "--use_resnet",
    dest="use_resnet",
    type=bool,
    default=True,
    help="generation network using reidule block",
)
parser.add_argument(
    "--use_lsgan",
    dest="use_lsgan",
    type=bool,
    default=True,
    help="gan loss defined in lsgan",
)
parser.add_argument(
    "--use_uncertainty",
    dest="use_uncertainty",
    type=bool,
    default=True,
    help="max size of image pool, 0 means do not use image pool",
)
parser.add_argument(
    "--max_size",
    dest="max_size",
    type=int,
    default=50,
    help="max size of image pool, 0 means do not use image pool",
)
parser.add_argument(
    "--continue_train",
    dest="continue_train",
    type=bool,
    default=False,
    help="if continue training, load the latest model: 1: true, 0: false",
)
parser.add_argument(
    "--save_conf",
    dest="save_conf",
    type=bool,
    default=False,
    help="save conf map in test phase",
)
args = parser.parse_args()

os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)


def main(_):

    set_path(args, args.experiment_name)

    tfconfig = tf.compat.v1.ConfigProto(allow_soft_placement=True)
    tfconfig.gpu_options.allow_growth = True
    with tf.compat.v1.Session(config=tfconfig) as sess:
        model = AUGAN(sess, args)
        # show_all_variables()
        # model.train(args) if args.phase == 'train' \
        #     else model.test(args)

        if args.phase == "train":
            model.train(args)
        elif args.phase == "test":
            model.test(args)
        elif args.phase == "convert":
            model.convert_image(args, "inf_data/b1ca2e5d-84cf9134.jpg", "out")
        else:
            raise Exception("Give a phase")


if __name__ == "__main__":
    tf.compat.v1.app.run()