File size: 7,451 Bytes
89ce6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import tensorflow as tf

# import tensorflow.contrib.slim as slim
import tf_slim as slim
import math
import pprint

pp = pprint.PrettyPrinter()
get_stddev = lambda x, k_h, k_w: 1 / math.sqrt(k_w * k_h * x.get_shape()[-1])
# import tensorflow.contrib as tf_contrib

# weight_init = tf_contrib.layers.xavier_initializer()
weight_init = tf.initializers.GlorotUniform()
weight_regularizer = None


def batch_norm(x, name="batch_norm"):
    # return tf.contrib.layers.batch_norm(
    #     x, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True, scope=name
    # )
    return tf.keras.layers.BatchNormalization(
        momentum=0.9, epsilon=1e-5, scale=True, name=name
    )(x)


def instance_norm(input, name="instance_norm"):
    with tf.compat.v1.variable_scope(name):
        depth = input.get_shape()[3]
        scale = tf.compat.v1.get_variable(
            "scale",
            [depth],
            initializer=tf.keras.initializers.RandomNormal(
                mean=1.0, stddev=0.02, seed=None
            ),
        )
        offset = tf.compat.v1.get_variable(
            "offset", [depth], initializer=tf.constant_initializer(0.0)
        )
        mean, variance = tf.nn.moments(input, axes=[1, 2], keepdims=True)
        epsilon = 1e-5
        inv = tf.math.rsqrt(variance + epsilon)
        normalized = (input - mean) * inv
        return scale * normalized + offset


def conv2d(input_, output_dim, ks=4, s=2, stddev=0.02, padding="SAME", name="conv2d"):
    with tf.compat.v1.variable_scope(name):
        return slim.conv2d(
            input_,
            output_dim,
            ks,
            s,
            padding=padding,
            activation_fn=None,
            weights_initializer=tf.keras.initializers.TruncatedNormal(stddev=stddev),
            biases_initializer=None,
        )


def deconv2d(input_, output_dim, ks=4, s=2, stddev=0.02, name="deconv2d"):
    with tf.compat.v1.variable_scope(name):
        return slim.conv2d_transpose(
            input_,
            output_dim,
            ks,
            s,
            padding="SAME",
            activation_fn=None,
            weights_initializer=tf.keras.initializers.TruncatedNormal(stddev=stddev),
            biases_initializer=None,
        )


def dilated_conv2d(

    input_, output_dim, ks=3, s=2, stddev=0.02, padding="SAME", name="conv2d"

):
    with tf.compat.v1.variable_scope(name):
        batch, in_height, in_width, in_channels = [int(d) for d in input_.get_shape()]
        filter = tf.compat.v1.get_variable(
            "filter",
            [ks, ks, in_channels, output_dim],
            dtype=tf.float32,
            initializer=tf.random_normal_initializer(0, stddev),
        )
        conv = tf.nn.atrous_conv2d(input_, filter, rate=s, padding=padding, name=name)

        return conv


def one_step(x, ch, kernel, stride, name):
    return lrelu(
        instance_norm(
            conv2d(x, ch, kernel, stride, name=name + "_first_c"), name + "_first_bn"
        )
    )


def one_step_dilated(x, ch, kernel, stride, name):
    return lrelu(
        instance_norm(
            dilated_conv2d(x, ch, kernel, stride, name=name + "_first_c"),
            name + "_first_bn",
        )
    )


def num_steps(x, ch, kernel, stride, num_steps, name):
    for i in range(num_steps):
        x = lrelu(
            instance_norm(
                conv2d(x, ch, kernel, stride, name=name + "_c_" + str(i)),
                name + "_bn_" + str(i),
            )
        )
    return x


def one_step_noins(x, ch, kernel, stride, name):
    return lrelu(conv2d(x, ch, kernel, stride, name=name + "_first_c"))


def num_steps_noins(x, ch, kernel, stride, num_steps, name):

    for i in range(num_steps):
        x = lrelu(conv2d(x, ch, kernel, stride, name=name + "_c_" + str(i)))
    return x


def dis_down(images, kernel_size, stride, n_scale, ch, name):
    backpack = images[0]
    for i in range(n_scale):
        if i == n_scale - 1:
            images[i] = num_steps(
                backpack, ch, kernel_size, stride, n_scale, name + str(i)
            )
        else:
            images[i] = one_step_dilated(
                images[i + 1], ch, kernel_size, 1, name + str(i)
            )
    return images


def dis_down_noins(images, kernel_size, stride, n_scale, ch, name):
    backpack = images[0]
    for i in range(n_scale):
        if i == n_scale - 1:
            images[i] = num_steps_noins(
                backpack, ch, kernel_size, stride, n_scale, name + str(i)
            )
        else:
            images[i] = one_step_noins(images[i + 1], ch, kernel_size, 1, name + str(i))
    return images


def final_conv(images, n_scale, name):
    for i in range(n_scale):
        images[i] = conv2d(images[i], 1, s=1, name=name + str(i))
    return images


def lrelu(x, leak=0.2, name="lrelu"):
    return tf.maximum(x, leak * x)


def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
    with tf.compat.v1.variable_scope(scope or "Linear"):
        matrix = tf.get_variable(
            "Matrix",
            [input_.get_shape()[-1], output_size],
            tf.float32,
            tf.random_normal_initializer(stddev=stddev),
        )
        bias = tf.get_variable(
            "bias", [output_size], initializer=tf.constant_initializer(bias_start)
        )
        if with_w:
            return tf.matmul(input_, matrix) + bias, matrix, bias
        else:
            return tf.matmul(input_, matrix) + bias


def get_ones_like(logit):
    target = []
    for i in range(len(logit)):
        target.append(tf.ones_like(logit[i]))
    return target


def get_zeros_like(logit):
    target = []
    for i in range(len(logit)):
        target.append(tf.zeros_like(logit[i]))
    return target


def conv(

    x,

    channels,

    kernel=4,

    stride=2,

    pad=0,

    pad_type="zero",

    use_bias=True,

    scope="conv_0",

):
    with tf.compat.v1.variable_scope(scope):
        if pad_type == "zero":
            x = tf.pad(x, [[0, 0], [pad, pad], [pad, pad], [0, 0]])
        if pad_type == "reflect":
            x = tf.pad(x, [[0, 0], [pad, pad], [pad, pad], [0, 0]], mode="REFLECT")

        x = tf.layers.conv2d(
            inputs=x,
            filters=channels,
            kernel_size=kernel,
            kernel_initializer=weight_init,
            kernel_regularizer=weight_regularizer,
            strides=stride,
            use_bias=use_bias,
        )

        return x


def reduce_sum(input_tensor, axis=None, keepdims=False):
    try:
        return tf.reduce_sum(input_tensor, axis=axis, keepdims=keepdims)
    except:
        return tf.reduce_sum(input_tensor, axis=axis, keep_dims=keepdims)


def get_shape(inputs, name=None):
    name = "shape" if name is None else name
    with tf.name_scope(name):
        static_shape = inputs.get_shape().as_list()
        dynamic_shape = tf.shape(inputs)
        shape = []
        for i, dim in enumerate(static_shape):
            dim = dim if dim is not None else dynamic_shape[i]
            shape.append(dim)
        return shape


def show_all_variables():
    model_vars = tf.trainable_variables()
    slim.model_analyzer.analyze_vars(model_vars, print_info=True)