File size: 7,319 Bytes
89ce6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from collections import namedtuple
from utils import *
from ops import *
import time
from glob import glob


def gaussian_noise_layer(input_layer, std):
    noise = tf.random.normal(
        shape=tf.shape(input_layer), mean=0.0, stddev=std, dtype=tf.float32
    )
    return input_layer + noise


def generator_resnet(image, options, transfer=False, reuse=False, name="generator"):
    with tf.compat.v1.variable_scope(name):
        if reuse:
            tf.compat.v1.get_variable_scope().reuse_variables()
        else:
            assert tf.compat.v1.get_variable_scope().reuse is False

        def residule_block_dilated(x, dim, ks=3, s=1, name="res", down=False):
            if down:
                dim = dim * 2
            y = instance_norm(
                dilated_conv2d(x, dim, ks, s, padding="SAME", name=name + "_c1"),
                name + "_bn1",
            )
            y = tf.nn.relu(y)
            y = instance_norm(
                dilated_conv2d(y, dim, ks, s, padding="SAME", name=name + "_c2"),
                name + "_bn2",
            )
            out = y + x
            if down:
                out = tf.nn.relu(
                    instance_norm(
                        conv2d(out, dim // 2, 3, 1, name=name + "_down_c"),
                        name + "_in_down",
                    )
                )
            return out

        def residual_block(x_init, dim, ks=3, s=1, name="resblock", down=False):
            with tf.compat.v1.variable_scope(name):
                if down:
                    dim = dim * 2

                with tf.compat.v1.variable_scope("res1"):
                    x = instance_norm(
                        conv2d(x_init, dim, ks, s, padding="SAME", name=name + "_c1"),
                        name + "_in1",
                    )
                    x = tf.nn.relu(x)

                with tf.compat.v1.variable_scope("res2"):

                    x = instance_norm(
                        conv2d(x, dim, ks, s, padding="SAME", name=name + "_c2"),
                        name + "_in2",
                    )

                out = x + x_init

                if down:
                    out = tf.nn.relu(
                        instance_norm(
                            conv2d(out, dim // 2, 3, 1, name=name + "_down_c"),
                            name + "_in_down",
                        )
                    )
                return out

        ### Encoder architecture
        c0 = tf.pad(image, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
        c1 = tf.nn.relu(
            instance_norm(
                conv2d(c0, options.gf_dim, 7, 1, padding="VALID", name="g_e1_c"),
                "g_e1_bn",
            )
        )
        c2 = tf.nn.relu(
            instance_norm(
                conv2d(c1, options.gf_dim * 2, 3, 2, name="g_e2_c"), "g_e2_bn"
            )
        )
        c3 = tf.nn.relu(
            instance_norm(
                conv2d(c2, options.gf_dim * 4, 3, 2, name="g_e3_c"), "g_e3_bn"
            )
        )
        r1 = residule_block_dilated(c3, options.gf_dim * 4, name="g_r1")
        r2 = residule_block_dilated(r1, options.gf_dim * 4, name="g_r2")
        r3 = residule_block_dilated(r2, options.gf_dim * 4, name="g_r3")
        r4 = residule_block_dilated(r3, options.gf_dim * 4, name="g_r4")
        # r5 = residule_block_dilated(r4, options.gf_dim * 4, name='g_r5')

        if transfer:
            t1 = residual_block(r4, options.gf_dim * 4, name="g_t1")
            t2 = residual_block(t1, options.gf_dim * 4, name="g_t2")
            t3 = residual_block(t2, options.gf_dim * 4, name="g_t3")
            t4 = residual_block(t3, options.gf_dim * 4, name="g_t4")
            # feature = tf.concat([r4, t4], axis=3, name='g_concat')
            # down = True
            feature = t4
        else:
            feature = r4
            t4 = None
            down = False

        ### translation decoder architecture
        r6 = residule_block_dilated(feature, options.gf_dim * 4, name="g_r6")
        r7 = residule_block_dilated(r6, options.gf_dim * 4, name="g_r7")
        r8 = residule_block_dilated(r7, options.gf_dim * 4, name="g_r8")
        r9 = residule_block_dilated(r8, options.gf_dim * 4, name="g_r9")
        d1 = deconv2d(r9, options.gf_dim * 2, 3, 2, name="g_d1_dc")
        d1 = tf.nn.relu(instance_norm(d1, "g_d1_bn"))
        d2 = deconv2d(d1, options.gf_dim, 3, 2, name="g_d2_dc")
        d2 = tf.nn.relu(instance_norm(d2, "g_d2_bn"))
        d2 = tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
        pred = tf.nn.tanh(
            conv2d(d2, options.output_c_dim, 7, 1, padding="VALID", name="g_pred_c")
        )

        ### reconstruction decoder architecture
        r5 = gaussian_noise_layer(r4, 0.02)
        r6_rec = residule_block_dilated(r5, options.gf_dim * 4, name="g_r6_rec")
        r6_rec = gaussian_noise_layer(r6_rec, 0.02)
        r7_rec = residule_block_dilated(r6_rec, options.gf_dim * 4, name="g_r7_rec")
        r8_rec = residule_block_dilated(r7_rec, options.gf_dim * 4, name="g_r8_rec")
        r9_rec = residule_block_dilated(r8_rec, options.gf_dim * 4, name="g_r9_rec")
        d1_rec = deconv2d(r9_rec, options.gf_dim * 2, 3, 2, name="g_d1_dc_rec")
        d1_rec = tf.nn.relu(instance_norm(d1_rec, "g_d1_bn_rec"))
        d2_rec = deconv2d(d1_rec, options.gf_dim, 3, 2, name="g_d2_dc_rec")
        d2_rec = tf.nn.relu(instance_norm(d2_rec, "g_d2_bn_rec"))
        d2_rec = tf.pad(d2_rec, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
        pred_rec = tf.nn.tanh(
            conv2d(
                d2_rec, options.output_c_dim, 7, 1, padding="VALID", name="g_pred_c_rec"
            )
        )

        ## confidence prediction

        if transfer:

            d_conf = deconv2d(d1, options.gf_dim, 3, 2, name="g_d_dc_conf")
            d_conf = tf.nn.relu(instance_norm(d_conf, "g_d_bn_conf"))
            d_conf = tf.pad(d_conf, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
            pred_conf = tf.nn.softplus(
                conv2d(d_conf, 1, 7, 1, padding="VALID", name="g_pred_c_conf")
            )

        else:
            pred_conf = None

        return pred, pred_rec, r4, t4, pred_conf


def discriminator(image, options, n_scale=2, reuse=False, name="discriminator"):
    images = []
    for i in range(n_scale):
        images.append(
            tf.compat.v1.image.resize_bicubic(
                image, [get_shape(image)[1] // (2**i), get_shape(image)[2] // (2**i)]
            )
        )
    with tf.compat.v1.variable_scope(name):
        if reuse:
            tf.compat.v1.get_variable_scope().reuse_variables()
        else:
            assert tf.compat.v1.get_variable_scope().reuse is False
        images = dis_down(images, 4, 2, n_scale, options.df_dim, "d_h0_conv_scale_")
        images = dis_down(images, 4, 2, n_scale, options.df_dim * 2, "d_h1_conv_scale_")
        images = dis_down(images, 4, 2, n_scale, options.df_dim * 4, "d_h2_conv_scale_")
        images = dis_down(images, 4, 2, n_scale, options.df_dim * 8, "d_h3_conv_scale_")
        images = final_conv(images, n_scale, "d_pred_scale_")
        return images