File size: 5,436 Bytes
89ce6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# import scipy.misc
from PIL import Image
import numpy as np
import copy
import os


class ImagePool(object):
    def __init__(self, maxsize=50):
        self.maxsize = maxsize
        self.num_img = 0
        self.images = []

    def __call__(self, image):
        if self.maxsize <= 0:
            return image
        if self.num_img < self.maxsize:
            self.images.append(image)
            self.num_img += 1
            return image
        if np.random.rand() > 0.5:
            idx = int(np.random.rand() * self.maxsize)
            tmp1 = copy.copy(self.images[idx])[0]
            self.images[idx][0] = image[0]
            idx = int(np.random.rand() * self.maxsize)
            tmp2 = copy.copy(self.images[idx])[1]
            self.images[idx][1] = image[1]
            return [tmp1, tmp2]
        else:
            return image


def load_test_data(image_path, fine_size=256):
    img = Image.open(image_path)
    img = img.resize((fine_size * 2, fine_size))
    img = np.array(img)
    # Normalize image to the range [-1, 1]
    img = img / 127.5 - 1

    return img


def check_folder(path):
    if not os.path.exists(path):
        os.mkdir(path)


def load_train_data(image_path, load_size=286, fine_size=256, is_testing=False):
    img_A = Image.open(image_path[0])
    img_B = Image.open(image_path[1])

    if not is_testing:
        # Resize images using PIL
        img_A = img_A.resize((load_size * 2, load_size))
        img_B = img_B.resize((load_size * 2, load_size))

        # Random crop
        h1 = int(np.ceil(np.random.uniform(1e-2, load_size - fine_size)))
        w1 = int(np.ceil(np.random.uniform(1e-2, (load_size - fine_size) * 2)))
        img_A = np.array(img_A.crop((w1, h1, w1 + fine_size * 2, h1 + fine_size)))
        img_B = np.array(img_B.crop((w1, h1, w1 + fine_size * 2, h1 + fine_size)))

        # Random horizontal flip
        if np.random.random() > 0.5:
            img_A = np.fliplr(img_A)
            img_B = np.fliplr(img_B)
    else:
        # Resize images using PIL for testing
        img_A = img_A.resize((fine_size * 2, fine_size))
        img_B = img_B.resize((fine_size * 2, fine_size))

    # Normalize images to the range [-1, 1]
    img_A = img_A / 127.5 - 1.0
    img_B = img_B / 127.5 - 1.0

    # Concatenate images along the channel axis
    img_AB = np.concatenate((img_A, img_B), axis=2)

    return img_AB


# -----------------------------


def get_image(image_path, image_size, is_crop=True, resize_w=64, is_grayscale=False):
    return transform(
        load_image(image_path, is_grayscale), image_size, is_crop, resize_w
    )


def save_images(images, size, image_path):
    return imsave(images, size, image_path)


def load_image(path, is_grayscale=False):
    if is_grayscale:
        return np.array(Image.open(path).convert("L")).astype(np.float)
    else:
        return np.array(Image.open(path).convert("RGB")).astype(np.float)


def merge_images(images, size):
    return inverse_transform(images)


def merge(images, size):
    h, w = images.shape[1], images.shape[2]
    img = np.zeros((h * size[0], w * size[1], 3))
    for idx, image in enumerate(images):
        i = idx % size[1]
        j = idx // size[1]
        img[j * h : j * h + h, i * w : i * w + w, :] = image

    return img


def imsave(image, size, path):
    # Convert images to uint8 format and adjust the range
    image = ((image + 1.0) * 127.5).astype(np.uint8)

    # Merge images
    # merged_image = merge(images, size).astype(np.uint8)

    # Create a PIL Image from the numpy array
    pil_image = Image.fromarray(image)

    # Save the image using PIL
    pil_image.save(path)

    return None


def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64):
    if crop_w is None:
        crop_w = crop_h
    h, w = x.shape[:2]
    j = int(round((h - crop_h) / 2.0))
    i = int(round((w - crop_w) / 2.0))

    # Use PIL for resizing
    cropped_image = Image.fromarray(x[j : j + crop_h, i : i + crop_w].astype(np.uint8))
    cropped_image = cropped_image.resize((resize_w, resize_h))

    return np.array(cropped_image) / 127.5 - 1.0


def transform(image, npx=64, is_crop=True, resize_w=64):
    # npx: # of pixels width/height of image
    if is_crop:
        cropped_image = center_crop(image, npx, resize_w=resize_w)
    else:
        cropped_image = image
    return np.array(cropped_image) / 127.5 - 1.0


def inverse_transform(images):
    return (images + 1.0) / 2.0


def norm_img(img):
    img = img / np.linalg.norm(img)
    img = (img * 2.0) - 1.0

    return img


def set_path(args, experiment_name):
    args.checkpoint_dir = f"./check/{experiment_name}"
    args.sample_dir = f"./check/{experiment_name}/sample"
    if args.which_direction == "AtoB":
        args.test_dir = f"./check/{experiment_name}/testa2b"
    else:
        args.test_dir = f"./check/{experiment_name}/testb2a"
    args.conf_dir = f"./check/{experiment_name}/conf"
    if not os.path.exists(args.checkpoint_dir):
        os.makedirs(args.checkpoint_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)
    if not os.path.exists(args.conf_dir):
        os.makedirs(args.conf_dir)