|
import tensorflow as tf
|
|
|
|
epsilon = 1e-7
|
|
|
|
def conf_criterion_lp(im1, im2, conf_sigma):
|
|
loss = tf.abs(im1 - im2)
|
|
if conf_sigma is not None:
|
|
loss = loss * 2 / (conf_sigma + epsilon) + tf.log(conf_sigma * 2 + epsilon)
|
|
loss = tf.reduce_mean(loss)
|
|
else:
|
|
loss = tf.reduce_mean(loss)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
def conf_criterion(im1, im2, conf_sigma):
|
|
loss = tf.abs(im1 - im2)
|
|
if conf_sigma is not None:
|
|
loss = tf.math.exp(-conf_sigma) * 5 * loss + conf_sigma / 2
|
|
loss = tf.reduce_mean(loss)
|
|
else:
|
|
loss = tf.reduce_mean(loss)
|
|
|
|
return loss
|
|
|
|
|
|
def abs_criterion(in_, target):
|
|
return tf.reduce_mean(tf.abs(in_ - target))
|
|
|
|
|
|
def mae_criterion(in_, target):
|
|
return tf.reduce_mean((in_ - target) ** 2)
|
|
|
|
|
|
def sce_criterion(logits, labels):
|
|
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
|
|
|
|
|
|
def mae_criterion_list(in_, target):
|
|
loss = 0.0
|
|
for i in range(len(target)):
|
|
loss += tf.reduce_mean((in_[i] - target[i]) ** 2)
|
|
return loss / len(target)
|
|
|
|
|
|
def sce_criterion_list(logits, labels):
|
|
loss = 0.0
|
|
for i in range(len(labels)):
|
|
loss += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits[i], labels=labels[i]))
|
|
return loss / len(labels) |