# Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of [Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN](https://www.bmvc2021-virtualconference.com/assets/papers/1443.pdf) (AU-GAN)\ Jeong-gi Kwak, Youngsaeng Jin, Yuanming Li, Dongsik Yoon, Donghyeon Kim and Hanseok Ko
*British Machine Vision Conference (BMVC), 2021*
## Intro ### Night → Day ([BDD100K](https://bdd-data.berkeley.edu/)) ### Rainy night → Day ([Alderdey](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395))
## Architecture Our generator has asymmetric structure for editing day→night and night→day. Please refer our paper for details ## **Envs** ```bash git clone https://github.com/jgkwak95/AU-GAN.git cd AU-GAN # Create virtual environment conda create -y --name augan python=3.6.7 conda activate augan conda install tensorflow-gpu==1.14.0 # Tensorflow 1.14 pip install --no-cache-dir -r requirements.txt ``` ## **Preparing datasets** **Night → Day**
[Berkeley DeepDrive dataset](https://bdd-data.berkeley.edu/) contains 100,000 high resolution images of the urban roads for autonomous driving.

**Rainy night → Day**
[Alderley dataset](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395) consists of images of two domains, rainy night and daytime. It was collected while driving the same route in each weather environment.

Please download datasets and then construct them following [ForkGAN](https://github.com/zhengziqiang/ForkGAN) ## Pretrained Model Download the pretrained model for BDD100K(256x512) [here](https://drive.google.com/file/d/1rvIF3yE9MwPWj0kD4IEstETyMQXYAHzr/view?usp=sharing) and unzip it to ./check/bdd_exp/bdd100k_256/ ## Training ```bash # Alderley (256x512) python main_uncer.py --dataset_dir alderley --phase train --experiment_name alderley_exp --batch_size 8 --load_size 286 --fine_size 256 --use_uncertainty True ``` ```bash # BDD100k (256x512) python main_uncer.py --dataset_dir bdd100k --phase train --experiment_name bdd_exp --batch_size 8 --load_size 286 --fine_size 256 --use_uncertainty True ``` ## Test ```bash # Alderley (256x512) python main_uncer.py --dataset_dir alderley --phase test --experiment_name alderley_exp --batch_size 1 --load_size 286 --fine_size 256 ``` ```bash # BDD100k (256x512) python main_uncer.py --dataset_dir bdd100k --phase test --experiment_name bdd_exp --batch_size 1 --load_size 286 --fine_size 256 ``` ## Additional results More results in [paper](https://www.bmvc2021-virtualconference.com/assets/papers/1443.pdf) and [supplementary]() ## Uncertainty map ## **Citation** If our code is helpful your research, please cite our paper: ``` @article{kwak2021adverse, title={Adverse weather image translation with asymmetric and uncertainty-aware GAN}, author={Kwak, Jeong-gi and Jin, Youngsaeng and Li, Yuanming and Yoon, Dongsik and Kim, Donghyeon and Ko, Hanseok}, journal={arXiv preprint arXiv:2112.04283}, year={2021} } ``` ## Acknowledgments Our code is bulided upon the [ForkGAN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123480154.pdf) implementation.