|
"""General-purpose test script for image-to-image translation. |
|
|
|
Once you have trained your model with train.py, you can use this script to test the model. |
|
It will load a saved model from --checkpoints_dir and save the results to --results_dir. |
|
|
|
It first creates model and dataset given the option. It will hard-code some parameters. |
|
It then runs inference for --num_test images and save results to an HTML file. |
|
|
|
Example (You need to train models first or download pre-trained models from our website): |
|
Test a CycleGAN model (both sides): |
|
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan |
|
|
|
Test a CycleGAN model (one side only): |
|
python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout |
|
|
|
The option '--model test' is used for generating CycleGAN results only for one side. |
|
This option will automatically set '--dataset_mode single', which only loads the images from one set. |
|
On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, |
|
which is sometimes unnecessary. The results will be saved at ./results/. |
|
Use '--results_dir <directory_path_to_save_result>' to specify the results directory. |
|
|
|
Test a pix2pix model: |
|
python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA |
|
|
|
See options/base_options.py and options/test_options.py for more test options. |
|
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md |
|
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md |
|
""" |
|
import os |
|
from options.test_options import TestOptions |
|
from data import create_dataset |
|
from models import create_model |
|
from util.visualizer import save_images |
|
from util import html |
|
import util.util as util |
|
|
|
|
|
if __name__ == '__main__': |
|
opt = TestOptions().parse() |
|
|
|
opt.num_threads = 0 |
|
opt.batch_size = 1 |
|
opt.serial_batches = True |
|
opt.no_flip = True |
|
opt.display_id = -1 |
|
dataset = create_dataset(opt) |
|
train_dataset = create_dataset(util.copyconf(opt, phase="train")) |
|
model = create_model(opt) |
|
|
|
web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) |
|
print('creating web directory', web_dir) |
|
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) |
|
|
|
for i, data in enumerate(dataset): |
|
if i == 0: |
|
model.data_dependent_initialize(data) |
|
model.setup(opt) |
|
model.parallelize() |
|
if opt.eval: |
|
model.eval() |
|
if i >= opt.num_test: |
|
break |
|
model.set_input(data) |
|
model.test() |
|
visuals = model.get_current_visuals() |
|
img_path = model.get_image_paths() |
|
if i % 5 == 0: |
|
print('processing (%04d)-th image... %s' % (i, img_path)) |
|
save_images(webpage, visuals, img_path, width=opt.display_winsize) |
|
webpage.save() |
|
|