|
import numpy as np |
|
import os |
|
import sys |
|
import ntpath |
|
import time |
|
from . import util, html |
|
from subprocess import Popen, PIPE |
|
|
|
if sys.version_info[0] == 2: |
|
VisdomExceptionBase = Exception |
|
else: |
|
VisdomExceptionBase = ConnectionError |
|
|
|
|
|
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): |
|
"""Save images to the disk. |
|
|
|
Parameters: |
|
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) |
|
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs |
|
image_path (str) -- the string is used to create image paths |
|
aspect_ratio (float) -- the aspect ratio of saved images |
|
width (int) -- the images will be resized to width x width |
|
|
|
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. |
|
""" |
|
image_dir = webpage.get_image_dir() |
|
short_path = ntpath.basename(image_path[0]) |
|
name = os.path.splitext(short_path)[0] |
|
|
|
webpage.add_header(name) |
|
ims, txts, links = [], [], [] |
|
|
|
for label, im_data in visuals.items(): |
|
im = util.tensor2im(im_data) |
|
image_name = '%s/%s.png' % (label, name) |
|
os.makedirs(os.path.join(image_dir, label), exist_ok=True) |
|
save_path = os.path.join(image_dir, image_name) |
|
util.save_image(im, save_path, aspect_ratio=aspect_ratio) |
|
ims.append(image_name) |
|
txts.append(label) |
|
links.append(image_name) |
|
webpage.add_images(ims, txts, links, width=width) |
|
|
|
|
|
class Visualizer(): |
|
"""This class includes several functions that can display/save images and print/save logging information. |
|
|
|
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the Visualizer class |
|
|
|
Parameters: |
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
Step 1: Cache the training/test options |
|
Step 2: connect to a visdom server |
|
Step 3: create an HTML object for saveing HTML filters |
|
Step 4: create a logging file to store training losses |
|
""" |
|
self.opt = opt |
|
if opt.display_id is None: |
|
self.display_id = np.random.randint(100000) * 10 |
|
else: |
|
self.display_id = opt.display_id |
|
self.use_html = opt.isTrain and not opt.no_html |
|
self.win_size = opt.display_winsize |
|
self.name = opt.name |
|
self.port = opt.display_port |
|
self.saved = False |
|
if self.display_id > 0: |
|
import visdom |
|
self.plot_data = {} |
|
self.ncols = opt.display_ncols |
|
if "tensorboard_base_url" not in os.environ: |
|
self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) |
|
else: |
|
self.vis = visdom.Visdom(port=2004, |
|
base_url=os.environ['tensorboard_base_url'] + '/visdom') |
|
if not self.vis.check_connection(): |
|
self.create_visdom_connections() |
|
|
|
if self.use_html: |
|
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') |
|
self.img_dir = os.path.join(self.web_dir, 'images') |
|
print('create web directory %s...' % self.web_dir) |
|
util.mkdirs([self.web_dir, self.img_dir]) |
|
|
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') |
|
with open(self.log_name, "a") as log_file: |
|
now = time.strftime("%c") |
|
log_file.write('================ Training Loss (%s) ================\n' % now) |
|
|
|
def reset(self): |
|
"""Reset the self.saved status""" |
|
self.saved = False |
|
|
|
def create_visdom_connections(self): |
|
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ |
|
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port |
|
print('\n\nCould not connect to Visdom server. \n Trying to start a server....') |
|
print('Command: %s' % cmd) |
|
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) |
|
|
|
def display_current_results(self, visuals, epoch, save_result): |
|
"""Display current results on visdom; save current results to an HTML file. |
|
|
|
Parameters: |
|
visuals (OrderedDict) - - dictionary of images to display or save |
|
epoch (int) - - the current epoch |
|
save_result (bool) - - if save the current results to an HTML file |
|
""" |
|
if self.display_id > 0: |
|
ncols = self.ncols |
|
if ncols > 0: |
|
ncols = min(ncols, len(visuals)) |
|
h, w = next(iter(visuals.values())).shape[:2] |
|
table_css = """<style> |
|
table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center} |
|
table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black} |
|
</style>""" % (w, h) |
|
|
|
title = self.name |
|
label_html = '' |
|
label_html_row = '' |
|
images = [] |
|
idx = 0 |
|
for label, image in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
label_html_row += '<td>%s</td>' % label |
|
images.append(image_numpy.transpose([2, 0, 1])) |
|
idx += 1 |
|
if idx % ncols == 0: |
|
label_html += '<tr>%s</tr>' % label_html_row |
|
label_html_row = '' |
|
white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 |
|
while idx % ncols != 0: |
|
images.append(white_image) |
|
label_html_row += '<td></td>' |
|
idx += 1 |
|
if label_html_row != '': |
|
label_html += '<tr>%s</tr>' % label_html_row |
|
try: |
|
self.vis.images(images, ncols, 2, self.display_id + 1, |
|
None, dict(title=title + ' images')) |
|
label_html = '<table>%s</table>' % label_html |
|
self.vis.text(table_css + label_html, win=self.display_id + 2, |
|
opts=dict(title=title + ' labels')) |
|
except VisdomExceptionBase: |
|
self.create_visdom_connections() |
|
|
|
else: |
|
idx = 1 |
|
try: |
|
for label, image in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
self.vis.image( |
|
image_numpy.transpose([2, 0, 1]), |
|
self.display_id + idx, |
|
None, |
|
dict(title=label) |
|
) |
|
idx += 1 |
|
except VisdomExceptionBase: |
|
self.create_visdom_connections() |
|
|
|
if self.use_html and (save_result or not self.saved): |
|
self.saved = True |
|
|
|
for label, image in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) |
|
util.save_image(image_numpy, img_path) |
|
|
|
|
|
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0) |
|
for n in range(epoch, 0, -1): |
|
webpage.add_header('epoch [%d]' % n) |
|
ims, txts, links = [], [], [] |
|
|
|
for label, image_numpy in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
img_path = 'epoch%.3d_%s.png' % (n, label) |
|
ims.append(img_path) |
|
txts.append(label) |
|
links.append(img_path) |
|
webpage.add_images(ims, txts, links, width=self.win_size) |
|
webpage.save() |
|
|
|
def plot_current_losses(self, epoch, counter_ratio, losses): |
|
"""display the current losses on visdom display: dictionary of error labels and values |
|
|
|
Parameters: |
|
epoch (int) -- current epoch |
|
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 |
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs |
|
""" |
|
if len(losses) == 0: |
|
return |
|
|
|
plot_name = '_'.join(list(losses.keys())) |
|
|
|
if plot_name not in self.plot_data: |
|
self.plot_data[plot_name] = {'X': [], 'Y': [], 'legend': list(losses.keys())} |
|
|
|
plot_data = self.plot_data[plot_name] |
|
plot_id = list(self.plot_data.keys()).index(plot_name) |
|
|
|
plot_data['X'].append(epoch + counter_ratio) |
|
plot_data['Y'].append([losses[k] for k in plot_data['legend']]) |
|
try: |
|
self.vis.line( |
|
X=np.stack([np.array(plot_data['X'])] * len(plot_data['legend']), 1), |
|
Y=np.array(plot_data['Y']), |
|
opts={ |
|
'title': self.name, |
|
'legend': plot_data['legend'], |
|
'xlabel': 'epoch', |
|
'ylabel': 'loss'}, |
|
win=self.display_id - plot_id) |
|
except VisdomExceptionBase: |
|
self.create_visdom_connections() |
|
|
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data): |
|
"""print current losses on console; also save the losses to the disk |
|
|
|
Parameters: |
|
epoch (int) -- current epoch |
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) |
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs |
|
t_comp (float) -- computational time per data point (normalized by batch_size) |
|
t_data (float) -- data loading time per data point (normalized by batch_size) |
|
""" |
|
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) |
|
for k, v in losses.items(): |
|
message += '%s: %.3f ' % (k, v) |
|
|
|
print(message) |
|
with open(self.log_name, "a") as log_file: |
|
log_file.write('%s\n' % message) |
|
|