|
import torch
|
|
import os
|
|
from tqdm import tqdm
|
|
|
|
def load_real_image(folder = "data/", img_name = None, idx = 0, img_size=512, device='cuda'):
|
|
from ddm_inversion.utils import pil_to_tensor
|
|
from PIL import Image
|
|
from glob import glob
|
|
if img_name is not None:
|
|
path = os.path.join(folder, img_name)
|
|
else:
|
|
path = glob(folder + "*")[idx]
|
|
|
|
img = Image.open(path).resize((img_size,
|
|
img_size))
|
|
|
|
img = pil_to_tensor(img).to(device)
|
|
|
|
if img.shape[1]== 4:
|
|
img = img[:,:3,:,:]
|
|
return img
|
|
|
|
def mu_tilde(model, xt,x0, timestep):
|
|
"mu_tilde(x_t, x_0) DDPM paper eq. 7"
|
|
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
|
alpha_t = model.scheduler.alphas[timestep]
|
|
beta_t = 1 - alpha_t
|
|
alpha_bar = model.scheduler.alphas_cumprod[timestep]
|
|
return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + ((alpha_t**0.5 *(1-alpha_prod_t_prev)) / (1- alpha_bar))*xt
|
|
|
|
def sample_xts_from_x0(model, x0, num_inference_steps=50):
|
|
"""
|
|
Samples from P(x_1:T|x_0)
|
|
"""
|
|
|
|
alpha_bar = model.scheduler.alphas_cumprod
|
|
sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
|
|
alphas = model.scheduler.alphas
|
|
betas = 1 - alphas
|
|
variance_noise_shape = (
|
|
num_inference_steps,
|
|
model.unet.in_channels,
|
|
model.unet.sample_size,
|
|
model.unet.sample_size)
|
|
|
|
timesteps = model.scheduler.timesteps.to(model.device)
|
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
|
|
xts = torch.zeros((num_inference_steps+1,model.unet.in_channels, model.unet.sample_size, model.unet.sample_size)).to(x0.device)
|
|
xts[0] = x0
|
|
for t in reversed(timesteps):
|
|
idx = num_inference_steps-t_to_idx[int(t)]
|
|
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
|
|
|
|
|
|
return xts
|
|
|
|
|
|
def encode_text(model, prompts):
|
|
text_input = model.tokenizer(
|
|
prompts,
|
|
padding="max_length",
|
|
max_length=model.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
with torch.no_grad():
|
|
text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
|
return text_encoding
|
|
|
|
def forward_step(model, model_output, timestep, sample):
|
|
next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
|
|
timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)
|
|
|
|
|
|
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
|
|
|
|
|
|
beta_prod_t = 1 - alpha_prod_t
|
|
|
|
|
|
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
|
|
|
|
|
next_sample = model.scheduler.add_noise(pred_original_sample,
|
|
model_output,
|
|
torch.LongTensor([next_timestep]))
|
|
return next_sample
|
|
|
|
|
|
def get_variance(model, timestep):
|
|
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
|
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
|
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
|
beta_prod_t = 1 - alpha_prod_t
|
|
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
|
return variance
|
|
|
|
def inversion_forward_process(model, x0,
|
|
etas = None,
|
|
prog_bar = False,
|
|
prompt = "",
|
|
cfg_scale = 3.5,
|
|
num_inference_steps=50, eps = None):
|
|
|
|
if not prompt=="":
|
|
text_embeddings = encode_text(model, prompt)
|
|
uncond_embedding = encode_text(model, "")
|
|
timesteps = model.scheduler.timesteps.to(model.device)
|
|
variance_noise_shape = (
|
|
num_inference_steps,
|
|
model.unet.in_channels,
|
|
model.unet.sample_size,
|
|
model.unet.sample_size)
|
|
if etas is None or (type(etas) in [int, float] and etas == 0):
|
|
eta_is_zero = True
|
|
zs = None
|
|
else:
|
|
eta_is_zero = False
|
|
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
|
|
xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps)
|
|
alpha_bar = model.scheduler.alphas_cumprod
|
|
zs = torch.zeros(size=variance_noise_shape, device=model.device)
|
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
|
|
xt = x0
|
|
|
|
op = tqdm(timesteps) if prog_bar else timesteps
|
|
|
|
for t in op:
|
|
|
|
idx = num_inference_steps-t_to_idx[int(t)]-1
|
|
|
|
if not eta_is_zero:
|
|
xt = xts[idx+1][None]
|
|
|
|
|
|
with torch.no_grad():
|
|
out = model.unet.forward(xt, timestep = t, encoder_hidden_states = uncond_embedding)
|
|
if not prompt=="":
|
|
cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings)
|
|
|
|
if not prompt=="":
|
|
|
|
noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
|
|
else:
|
|
noise_pred = out.sample
|
|
if eta_is_zero:
|
|
|
|
xt = forward_step(model, noise_pred, t, xt)
|
|
|
|
else:
|
|
|
|
xtm1 = xts[idx][None]
|
|
|
|
pred_original_sample = (xt - (1-alpha_bar[t]) ** 0.5 * noise_pred ) / alpha_bar[t] ** 0.5
|
|
|
|
|
|
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
|
|
|
variance = get_variance(model, t)
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance ) ** (0.5) * noise_pred
|
|
|
|
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
|
|
|
z = (xtm1 - mu_xt ) / ( etas[idx] * variance ** 0.5 )
|
|
zs[idx] = z
|
|
|
|
|
|
xtm1 = mu_xt + ( etas[idx] * variance ** 0.5 )*z
|
|
xts[idx] = xtm1
|
|
|
|
if not zs is None:
|
|
zs[0] = torch.zeros_like(zs[0])
|
|
|
|
return xt, zs, xts
|
|
|
|
|
|
def reverse_step(model, model_output, timestep, sample, eta = 0, variance_noise=None):
|
|
|
|
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
|
|
|
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
|
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
|
beta_prod_t = 1 - alpha_prod_t
|
|
|
|
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
|
|
|
|
|
|
|
variance = get_variance(model, timestep)
|
|
std_dev_t = eta * variance ** (0.5)
|
|
|
|
model_output_direction = model_output
|
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
|
|
|
|
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
|
|
|
if eta > 0:
|
|
if variance_noise is None:
|
|
variance_noise = torch.randn(model_output.shape, device=model.device)
|
|
sigma_z = eta * variance ** (0.5) * variance_noise
|
|
prev_sample = prev_sample + sigma_z
|
|
|
|
return prev_sample
|
|
|
|
def inversion_reverse_process(model,
|
|
xT,
|
|
etas = 0,
|
|
prompts = "",
|
|
cfg_scales = None,
|
|
prog_bar = False,
|
|
zs = None,
|
|
controller=None,
|
|
asyrp = False):
|
|
|
|
batch_size = len(prompts)
|
|
|
|
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(model.device)
|
|
|
|
text_embeddings = encode_text(model, prompts)
|
|
uncond_embedding = encode_text(model, [""] * batch_size)
|
|
|
|
if etas is None: etas = 0
|
|
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
|
|
assert len(etas) == model.scheduler.num_inference_steps
|
|
timesteps = model.scheduler.timesteps.to(model.device)
|
|
|
|
xt = xT.expand(batch_size, -1, -1, -1)
|
|
op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
|
|
|
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
|
|
|
for t in op:
|
|
idx = model.scheduler.num_inference_steps-t_to_idx[int(t)]-(model.scheduler.num_inference_steps-zs.shape[0]+1)
|
|
|
|
with torch.no_grad():
|
|
uncond_out = model.unet.forward(xt, timestep = t,
|
|
encoder_hidden_states = uncond_embedding)
|
|
|
|
|
|
if prompts:
|
|
with torch.no_grad():
|
|
cond_out = model.unet.forward(xt, timestep = t,
|
|
encoder_hidden_states = text_embeddings)
|
|
|
|
|
|
z = zs[idx] if not zs is None else None
|
|
z = z.expand(batch_size, -1, -1, -1)
|
|
if prompts:
|
|
|
|
noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
|
|
else:
|
|
noise_pred = uncond_out.sample
|
|
|
|
xt = reverse_step(model, noise_pred, t, xt, eta = etas[idx], variance_noise = z)
|
|
if controller is not None:
|
|
xt = controller.step_callback(xt)
|
|
return xt, zs
|
|
|
|
|
|
|