|
""" |
|
This code was originally taken from |
|
https://github.com/google/prompt-to-prompt |
|
""" |
|
|
|
|
|
LOW_RESOURCE = True |
|
MAX_NUM_WORDS = 77 |
|
|
|
|
|
from typing import Optional, Union, Tuple, List, Callable, Dict |
|
import prompt_to_prompt.ptp_utils as ptp_utils |
|
import prompt_to_prompt.seq_aligner as seq_aligner |
|
import torch |
|
import torch.nn.functional as nnf |
|
import abc |
|
import numpy as np |
|
|
|
|
|
class LocalBlend: |
|
|
|
def __call__(self, x_t, attention_store): |
|
k = 1 |
|
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] |
|
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] |
|
maps = torch.cat(maps, dim=1) |
|
maps = (maps * self.alpha_layers).sum(-1).mean(1) |
|
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) |
|
mask = nnf.interpolate(mask, size=(x_t.shape[2:])) |
|
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] |
|
mask = mask.gt(self.threshold) |
|
mask = (mask[:1] + mask[1:]).float() |
|
x_t = x_t[:1] + mask * (x_t - x_t[:1]) |
|
return x_t |
|
|
|
def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3, device=None, tokenizer=None): |
|
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) |
|
for i, (prompt, words_) in enumerate(zip(prompts, words)): |
|
if type(words_) is str: |
|
words_ = [words_] |
|
for word in words_: |
|
ind = ptp_utils.get_word_inds(prompt, word, tokenizer) |
|
alpha_layers[i, :, :, :, :, ind] = 1 |
|
self.alpha_layers = alpha_layers.to(device) |
|
self.threshold = threshold |
|
|
|
|
|
class AttentionControl(abc.ABC): |
|
|
|
def step_callback(self, x_t): |
|
return x_t |
|
|
|
def between_steps(self): |
|
return |
|
|
|
@property |
|
def num_uncond_att_layers(self): |
|
return self.num_att_layers if LOW_RESOURCE else 0 |
|
|
|
@abc.abstractmethod |
|
def forward (self, attn, is_cross: bool, place_in_unet: str): |
|
raise NotImplementedError |
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str): |
|
if self.cur_att_layer >= self.num_uncond_att_layers: |
|
if LOW_RESOURCE: |
|
attn = self.forward(attn, is_cross, place_in_unet) |
|
else: |
|
h = attn.shape[0] |
|
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) |
|
self.cur_att_layer += 1 |
|
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: |
|
self.cur_att_layer = 0 |
|
self.cur_step += 1 |
|
self.between_steps() |
|
return attn |
|
|
|
def reset(self): |
|
self.cur_step = 0 |
|
self.cur_att_layer = 0 |
|
|
|
def __init__(self): |
|
self.cur_step = 0 |
|
self.num_att_layers = -1 |
|
self.cur_att_layer = 0 |
|
|
|
class EmptyControl(AttentionControl): |
|
|
|
def forward (self, attn, is_cross: bool, place_in_unet: str): |
|
return attn |
|
|
|
|
|
class AttentionStore(AttentionControl): |
|
|
|
@staticmethod |
|
def get_empty_store(): |
|
return {"down_cross": [], "mid_cross": [], "up_cross": [], |
|
"down_self": [], "mid_self": [], "up_self": []} |
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" |
|
if attn.shape[1] <= 32 ** 2: |
|
self.step_store[key].append(attn) |
|
return attn |
|
|
|
def between_steps(self): |
|
if len(self.attention_store) == 0: |
|
self.attention_store = self.step_store |
|
else: |
|
for key in self.attention_store: |
|
for i in range(len(self.attention_store[key])): |
|
self.attention_store[key][i] += self.step_store[key][i] |
|
self.step_store = self.get_empty_store() |
|
|
|
def get_average_attention(self): |
|
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} |
|
return average_attention |
|
|
|
|
|
def reset(self): |
|
super(AttentionStore, self).reset() |
|
self.step_store = self.get_empty_store() |
|
self.attention_store = {} |
|
|
|
def __init__(self): |
|
super(AttentionStore, self).__init__() |
|
self.step_store = self.get_empty_store() |
|
self.attention_store = {} |
|
|
|
|
|
class AttentionControlEdit(AttentionStore, abc.ABC): |
|
|
|
def step_callback(self, x_t): |
|
if self.local_blend is not None: |
|
x_t = self.local_blend(x_t, self.attention_store) |
|
return x_t |
|
|
|
def replace_self_attention(self, attn_base, att_replace): |
|
if att_replace.shape[2] <= 16 ** 2: |
|
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) |
|
else: |
|
return att_replace |
|
|
|
@abc.abstractmethod |
|
def replace_cross_attention(self, attn_base, att_replace): |
|
raise NotImplementedError |
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) |
|
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): |
|
h = attn.shape[0] // (self.batch_size) |
|
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) |
|
attn_base, attn_repalce = attn[0], attn[1:] |
|
if is_cross: |
|
alpha_words = self.cross_replace_alpha[self.cur_step] |
|
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce |
|
attn[1:] = attn_repalce_new |
|
else: |
|
attn[1:] = self.replace_self_attention(attn_base, attn_repalce) |
|
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) |
|
return attn |
|
|
|
def __init__(self, prompts, num_steps: int, |
|
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], |
|
self_replace_steps: Union[float, Tuple[float, float]], |
|
local_blend: Optional[LocalBlend], |
|
device=None, |
|
tokenizer=None): |
|
super(AttentionControlEdit, self).__init__() |
|
self.batch_size = len(prompts) |
|
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) |
|
if type(self_replace_steps) is float: |
|
self_replace_steps = 0, self_replace_steps |
|
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) |
|
self.local_blend = local_blend |
|
|
|
class AttentionReplace(AttentionControlEdit): |
|
|
|
def replace_cross_attention(self, attn_base, att_replace): |
|
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) |
|
|
|
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, |
|
local_blend: Optional[LocalBlend] = None, model=None): |
|
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, device=model.device) |
|
self.mapper = seq_aligner.get_replacement_mapper(prompts, model.tokenizer).to(model.device) |
|
|
|
|
|
class AttentionRefine(AttentionControlEdit): |
|
|
|
def replace_cross_attention(self, attn_base, att_replace): |
|
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) |
|
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) |
|
return attn_replace |
|
|
|
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, |
|
local_blend: Optional[LocalBlend] = None, model=None): |
|
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, device=model.device) |
|
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, model.tokenizer) |
|
self.mapper, alphas = self.mapper.to(model.device), alphas.to(model.device) |
|
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) |
|
|
|
|
|
class AttentionReweight(AttentionControlEdit): |
|
|
|
def replace_cross_attention(self, attn_base, att_replace): |
|
if self.prev_controller is not None: |
|
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) |
|
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] |
|
return attn_replace |
|
|
|
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, |
|
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None, device=None, tokenizer=None): |
|
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) |
|
self.equalizer = equalizer.to(device) |
|
self.prev_controller = controller |
|
|
|
|
|
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], |
|
Tuple[float, ...]], tokenizer=None): |
|
if type(word_select) is int or type(word_select) is str: |
|
word_select = (word_select,) |
|
equalizer = torch.ones(len(values), 77) |
|
values = torch.tensor(values, dtype=torch.float32) |
|
for word in word_select: |
|
inds = ptp_utils.get_word_inds(text, word, tokenizer) |
|
equalizer[:, inds] = values |
|
return equalizer |
|
|
|
from PIL import Image |
|
|
|
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int, prompts=None): |
|
out = [] |
|
attention_maps = attention_store.get_average_attention() |
|
num_pixels = res ** 2 |
|
for location in from_where: |
|
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: |
|
if item.shape[1] == num_pixels: |
|
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] |
|
out.append(cross_maps) |
|
out = torch.cat(out, dim=0) |
|
out = out.sum(0) / out.shape[0] |
|
return out.cpu() |
|
|
|
|
|
def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0, prompts=None, tokenizer=None): |
|
tokens = tokenizer.encode(prompts[select]) |
|
decoder = tokenizer.decode |
|
attention_maps = aggregate_attention(attention_store, res, from_where, True, select, prompts) |
|
images = [] |
|
for i in range(len(tokens)): |
|
image = attention_maps[:, :, i] |
|
image = 255 * image / image.max() |
|
image = image.unsqueeze(-1).expand(*image.shape, 3) |
|
image = image.numpy().astype(np.uint8) |
|
image = np.array(Image.fromarray(image).resize((256, 256))) |
|
image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) |
|
images.append(image) |
|
return(ptp_utils.view_images(np.stack(images, axis=0))) |
|
|
|
|
|
def show_self_attention_comp(attention_store: AttentionStore, res: int, from_where: List[str], |
|
max_com=10, select: int = 0): |
|
attention_maps = aggregate_attention(attention_store, res, from_where, False, select).numpy().reshape((res ** 2, res ** 2)) |
|
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) |
|
images = [] |
|
for i in range(max_com): |
|
image = vh[i].reshape(res, res) |
|
image = image - image.min() |
|
image = 255 * image / image.max() |
|
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) |
|
image = Image.fromarray(image).resize((256, 256)) |
|
image = np.array(image) |
|
images.append(image) |
|
ptp_utils.view_images(np.concatenate(images, axis=1)) |
|
|
|
def run_and_display(model, prompts, controller, latent=None, run_baseline=False, generator=None): |
|
if run_baseline: |
|
print("w.o. prompt-to-prompt") |
|
images, latent = run_and_display(model, prompts, EmptyControl(), latent=latent, run_baseline=False, generator=generator) |
|
print("with prompt-to-prompt") |
|
images, x_t = ptp_utils.text2image_ld |
|
|
|
|
|
def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None): |
|
if type(image_path) is str: |
|
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3] |
|
else: |
|
image = image_path |
|
h, w, c = image.shape |
|
left = min(left, w-1) |
|
right = min(right, w - left - 1) |
|
top = min(top, h - left - 1) |
|
bottom = min(bottom, h - top - 1) |
|
image = image[top:h-bottom, left:w-right] |
|
h, w, c = image.shape |
|
if h < w: |
|
offset = (w - h) // 2 |
|
image = image[:, offset:offset + h] |
|
elif w < h: |
|
offset = (h - w) // 2 |
|
image = image[offset:offset + w] |
|
image = np.array(Image.fromarray(image).resize((512, 512))) |
|
image = torch.from_numpy(image).float() / 127.5 - 1 |
|
image = image.permute(2, 0, 1).unsqueeze(0).to(device) |
|
|
|
return image |