|
"""
|
|
This code was originally taken from
|
|
https://github.com/google/prompt-to-prompt
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
import cv2
|
|
from typing import Optional, Union, Tuple, List, Callable, Dict
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
|
|
h, w, c = image.shape
|
|
offset = int(h * .2)
|
|
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
img[:h] = image
|
|
textsize = cv2.getTextSize(text, font, 1, 2)[0]
|
|
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
|
|
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
|
|
return img
|
|
|
|
|
|
def view_images(images, num_rows=1, offset_ratio=0.02):
|
|
if type(images) is list:
|
|
num_empty = len(images) % num_rows
|
|
elif images.ndim == 4:
|
|
num_empty = images.shape[0] % num_rows
|
|
else:
|
|
images = [images]
|
|
num_empty = 0
|
|
|
|
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
|
|
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
|
|
num_items = len(images)
|
|
|
|
h, w, c = images[0].shape
|
|
offset = int(h * offset_ratio)
|
|
num_cols = num_items // num_rows
|
|
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
|
|
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
|
|
for i in range(num_rows):
|
|
for j in range(num_cols):
|
|
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
|
|
i * num_cols + j]
|
|
|
|
pil_img = Image.fromarray(image_)
|
|
|
|
return pil_img
|
|
|
|
|
|
|
|
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
|
|
if low_resource:
|
|
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
|
|
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
|
|
else:
|
|
latents_input = torch.cat([latents] * 2)
|
|
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
|
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
|
cfg_scales_tensor = torch.Tensor(guidance_scale).view(-1,1,1,1).to(model.device)
|
|
noise_pred = noise_pred_uncond + cfg_scales_tensor * (noise_prediction_text - noise_pred_uncond)
|
|
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
|
|
latents = controller.step_callback(latents)
|
|
return latents
|
|
|
|
|
|
def latent2image(vae, latents):
|
|
latents = 1 / 0.18215 * latents
|
|
image = vae.decode(latents)['sample']
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
image = (image * 255).astype(np.uint8)
|
|
return image
|
|
|
|
|
|
def init_latent(latent, model, height, width, generator, batch_size):
|
|
if latent is None:
|
|
latent = torch.randn(
|
|
(1, model.unet.in_channels, height // 8, width // 8),
|
|
generator=generator,
|
|
)
|
|
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
|
|
return latent, latents
|
|
|
|
|
|
@torch.no_grad()
|
|
def text2image_ldm(
|
|
model,
|
|
prompt: List[str],
|
|
controller,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: Optional[float] = 7.,
|
|
generator: Optional[torch.Generator] = None,
|
|
latent: Optional[torch.FloatTensor] = None,
|
|
):
|
|
register_attention_control(model, controller)
|
|
height = width = 256
|
|
batch_size = len(prompt)
|
|
|
|
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
|
|
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
|
|
|
|
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
|
|
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
|
|
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
|
context = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
model.scheduler.set_timesteps(num_inference_steps)
|
|
for t in tqdm(model.scheduler.timesteps):
|
|
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
|
|
|
|
image = latent2image(model.vqvae, latents)
|
|
|
|
return image, latent
|
|
|
|
|
|
@torch.no_grad()
|
|
def text2image_ldm_stable(
|
|
model,
|
|
prompt: List[str],
|
|
controller,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
generator: Optional[torch.Generator] = None,
|
|
latent: Optional[torch.FloatTensor] = None,
|
|
restored_wt = None,
|
|
restored_zs = None,
|
|
low_resource: bool = False,
|
|
):
|
|
register_attention_control(model, controller)
|
|
height = width = 512
|
|
batch_size = len(prompt)
|
|
|
|
text_input = model.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=model.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
|
max_length = text_input.input_ids.shape[-1]
|
|
uncond_input = model.tokenizer(
|
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
|
)
|
|
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
|
|
|
context = [uncond_embeddings, text_embeddings]
|
|
if not low_resource:
|
|
context = torch.cat(context)
|
|
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
|
|
|
|
|
|
|
model.scheduler.set_timesteps(num_inference_steps)
|
|
for t in tqdm(model.scheduler.timesteps):
|
|
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
|
|
|
|
|
|
|
|
return latents, latent
|
|
|
|
|
|
def register_attention_control(model, controller):
|
|
def ca_forward(self, place_in_unet):
|
|
to_out = self.to_out
|
|
if type(to_out) is torch.nn.modules.container.ModuleList:
|
|
to_out = self.to_out[0]
|
|
else:
|
|
to_out = self.to_out
|
|
|
|
def forward(x, context=None, mask=None):
|
|
batch_size, sequence_length, dim = x.shape
|
|
h = self.heads
|
|
q = self.to_q(x)
|
|
is_cross = context is not None
|
|
context = context if is_cross else x
|
|
k = self.to_k(context)
|
|
v = self.to_v(context)
|
|
q = self.reshape_heads_to_batch_dim(q)
|
|
k = self.reshape_heads_to_batch_dim(k)
|
|
v = self.reshape_heads_to_batch_dim(v)
|
|
|
|
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
|
|
|
if mask is not None:
|
|
mask = mask.reshape(batch_size, -1)
|
|
max_neg_value = -torch.finfo(sim.dtype).max
|
|
mask = mask[:, None, :].repeat(h, 1, 1)
|
|
sim.masked_fill_(~mask, max_neg_value)
|
|
|
|
|
|
attn = sim.softmax(dim=-1)
|
|
attn = controller(attn, is_cross, place_in_unet)
|
|
out = torch.einsum("b i j, b j d -> b i d", attn, v)
|
|
out = self.reshape_batch_dim_to_heads(out)
|
|
return to_out(out)
|
|
|
|
return forward
|
|
|
|
class DummyController:
|
|
|
|
def __call__(self, *args):
|
|
return args[0]
|
|
|
|
def __init__(self):
|
|
self.num_att_layers = 0
|
|
|
|
if controller is None:
|
|
controller = DummyController()
|
|
|
|
def register_recr(net_, count, place_in_unet):
|
|
if net_.__class__.__name__ == 'CrossAttention':
|
|
net_.forward = ca_forward(net_, place_in_unet)
|
|
return count + 1
|
|
elif hasattr(net_, 'children'):
|
|
for net__ in net_.children():
|
|
count = register_recr(net__, count, place_in_unet)
|
|
return count
|
|
|
|
cross_att_count = 0
|
|
sub_nets = model.unet.named_children()
|
|
for net in sub_nets:
|
|
if "down" in net[0]:
|
|
cross_att_count += register_recr(net[1], 0, "down")
|
|
elif "up" in net[0]:
|
|
cross_att_count += register_recr(net[1], 0, "up")
|
|
elif "mid" in net[0]:
|
|
cross_att_count += register_recr(net[1], 0, "mid")
|
|
|
|
controller.num_att_layers = cross_att_count
|
|
|
|
|
|
def get_word_inds(text: str, word_place: int, tokenizer):
|
|
split_text = text.split(" ")
|
|
if type(word_place) is str:
|
|
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
|
elif type(word_place) is int:
|
|
word_place = [word_place]
|
|
out = []
|
|
if len(word_place) > 0:
|
|
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
|
cur_len, ptr = 0, 0
|
|
|
|
for i in range(len(words_encode)):
|
|
cur_len += len(words_encode[i])
|
|
if ptr in word_place:
|
|
out.append(i + 1)
|
|
if cur_len >= len(split_text[ptr]):
|
|
ptr += 1
|
|
cur_len = 0
|
|
return np.array(out)
|
|
|
|
|
|
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
|
|
word_inds: Optional[torch.Tensor]=None):
|
|
if type(bounds) is float:
|
|
bounds = 0, bounds
|
|
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
|
|
if word_inds is None:
|
|
word_inds = torch.arange(alpha.shape[2])
|
|
alpha[: start, prompt_ind, word_inds] = 0
|
|
alpha[start: end, prompt_ind, word_inds] = 1
|
|
alpha[end:, prompt_ind, word_inds] = 0
|
|
return alpha
|
|
|
|
|
|
def get_time_words_attention_alpha(prompts, num_steps,
|
|
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
|
|
tokenizer, max_num_words=77):
|
|
if type(cross_replace_steps) is not dict:
|
|
cross_replace_steps = {"default_": cross_replace_steps}
|
|
if "default_" not in cross_replace_steps:
|
|
cross_replace_steps["default_"] = (0., 1.)
|
|
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
|
|
for i in range(len(prompts) - 1):
|
|
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
|
|
i)
|
|
for key, item in cross_replace_steps.items():
|
|
if key != "default_":
|
|
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
|
|
for i, ind in enumerate(inds):
|
|
if len(ind) > 0:
|
|
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
|
|
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
|
|
return alpha_time_words
|
|
|