|
"""
|
|
This code was originally taken from
|
|
https://github.com/google/prompt-to-prompt
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
|
|
class ScoreParams:
|
|
|
|
def __init__(self, gap, match, mismatch):
|
|
self.gap = gap
|
|
self.match = match
|
|
self.mismatch = mismatch
|
|
|
|
def mis_match_char(self, x, y):
|
|
if x != y:
|
|
return self.mismatch
|
|
else:
|
|
return self.match
|
|
|
|
|
|
def get_matrix(size_x, size_y, gap):
|
|
matrix = []
|
|
for i in range(len(size_x) + 1):
|
|
sub_matrix = []
|
|
for j in range(len(size_y) + 1):
|
|
sub_matrix.append(0)
|
|
matrix.append(sub_matrix)
|
|
for j in range(1, len(size_y) + 1):
|
|
matrix[0][j] = j*gap
|
|
for i in range(1, len(size_x) + 1):
|
|
matrix[i][0] = i*gap
|
|
return matrix
|
|
|
|
|
|
def get_matrix(size_x, size_y, gap):
|
|
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
|
|
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
|
|
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
|
|
return matrix
|
|
|
|
|
|
def get_traceback_matrix(size_x, size_y):
|
|
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
|
|
matrix[0, 1:] = 1
|
|
matrix[1:, 0] = 2
|
|
matrix[0, 0] = 4
|
|
return matrix
|
|
|
|
|
|
def global_align(x, y, score):
|
|
matrix = get_matrix(len(x), len(y), score.gap)
|
|
trace_back = get_traceback_matrix(len(x), len(y))
|
|
for i in range(1, len(x) + 1):
|
|
for j in range(1, len(y) + 1):
|
|
left = matrix[i, j - 1] + score.gap
|
|
up = matrix[i - 1, j] + score.gap
|
|
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
|
|
matrix[i, j] = max(left, up, diag)
|
|
if matrix[i, j] == left:
|
|
trace_back[i, j] = 1
|
|
elif matrix[i, j] == up:
|
|
trace_back[i, j] = 2
|
|
else:
|
|
trace_back[i, j] = 3
|
|
return matrix, trace_back
|
|
|
|
|
|
def get_aligned_sequences(x, y, trace_back):
|
|
x_seq = []
|
|
y_seq = []
|
|
i = len(x)
|
|
j = len(y)
|
|
mapper_y_to_x = []
|
|
while i > 0 or j > 0:
|
|
if trace_back[i, j] == 3:
|
|
x_seq.append(x[i-1])
|
|
y_seq.append(y[j-1])
|
|
i = i-1
|
|
j = j-1
|
|
mapper_y_to_x.append((j, i))
|
|
elif trace_back[i][j] == 1:
|
|
x_seq.append('-')
|
|
y_seq.append(y[j-1])
|
|
j = j-1
|
|
mapper_y_to_x.append((j, -1))
|
|
elif trace_back[i][j] == 2:
|
|
x_seq.append(x[i-1])
|
|
y_seq.append('-')
|
|
i = i-1
|
|
elif trace_back[i][j] == 4:
|
|
break
|
|
mapper_y_to_x.reverse()
|
|
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
|
|
|
|
|
|
def get_mapper(x: str, y: str, tokenizer, max_len=77):
|
|
x_seq = tokenizer.encode(x)
|
|
y_seq = tokenizer.encode(y)
|
|
score = ScoreParams(0, 1, -1)
|
|
matrix, trace_back = global_align(x_seq, y_seq, score)
|
|
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
|
|
alphas = torch.ones(max_len)
|
|
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
|
|
mapper = torch.zeros(max_len, dtype=torch.int64)
|
|
mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
|
|
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
|
|
return mapper, alphas
|
|
|
|
|
|
def get_refinement_mapper(prompts, tokenizer, max_len=77):
|
|
x_seq = prompts[0]
|
|
mappers, alphas = [], []
|
|
for i in range(1, len(prompts)):
|
|
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
|
|
mappers.append(mapper)
|
|
alphas.append(alpha)
|
|
return torch.stack(mappers), torch.stack(alphas)
|
|
|
|
|
|
def get_word_inds(text: str, word_place: int, tokenizer):
|
|
split_text = text.split(" ")
|
|
if type(word_place) is str:
|
|
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
|
elif type(word_place) is int:
|
|
word_place = [word_place]
|
|
out = []
|
|
if len(word_place) > 0:
|
|
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
|
cur_len, ptr = 0, 0
|
|
|
|
for i in range(len(words_encode)):
|
|
cur_len += len(words_encode[i])
|
|
if ptr in word_place:
|
|
out.append(i + 1)
|
|
if cur_len >= len(split_text[ptr]):
|
|
ptr += 1
|
|
cur_len = 0
|
|
return np.array(out)
|
|
|
|
|
|
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
|
|
words_x = x.split(' ')
|
|
words_y = y.split(' ')
|
|
if len(words_x) != len(words_y):
|
|
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
|
|
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
|
|
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
|
|
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
|
|
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
|
|
mapper = np.zeros((max_len, max_len))
|
|
i = j = 0
|
|
cur_inds = 0
|
|
while i < max_len and j < max_len:
|
|
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
|
|
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
|
|
if len(inds_source_) == len(inds_target_):
|
|
mapper[inds_source_, inds_target_] = 1
|
|
else:
|
|
ratio = 1 / len(inds_target_)
|
|
for i_t in inds_target_:
|
|
mapper[inds_source_, i_t] = ratio
|
|
cur_inds += 1
|
|
i += len(inds_source_)
|
|
j += len(inds_target_)
|
|
elif cur_inds < len(inds_source):
|
|
mapper[i, j] = 1
|
|
i += 1
|
|
j += 1
|
|
else:
|
|
mapper[j, j] = 1
|
|
i += 1
|
|
j += 1
|
|
|
|
return torch.from_numpy(mapper).float()
|
|
|
|
|
|
|
|
def get_replacement_mapper(prompts, tokenizer, max_len=77):
|
|
x_seq = prompts[0]
|
|
mappers = []
|
|
for i in range(1, len(prompts)):
|
|
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
|
|
mappers.append(mapper)
|
|
return torch.stack(mappers)
|
|
|
|
|