img2img-turbo / gradio_canny2image.py
qninhdt's picture
Upload 53 files
0f9e661 verified
raw
history blame
2.81 kB
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import gradio as gr
from src.image_prep import canny_from_pil
from src.pix2pix_turbo import Pix2Pix_Turbo
model = Pix2Pix_Turbo("edge_to_image")
def process(input_image, prompt, low_threshold, high_threshold):
# resize to be a multiple of 8
new_width = input_image.width - input_image.width % 8
new_height = input_image.height - input_image.height % 8
input_image = input_image.resize((new_width, new_height))
canny = canny_from_pil(input_image, low_threshold, high_threshold)
with torch.no_grad():
c_t = transforms.ToTensor()(canny).unsqueeze(0).cuda()
output_image = model(c_t, prompt)
output_pil = transforms.ToPILImage()(output_image[0].cpu() * 0.5 + 0.5)
# flippy canny values, map all 0s to 1s and 1s to 0s
canny_viz = 1 - (np.array(canny) / 255)
canny_viz = Image.fromarray((canny_viz * 255).astype(np.uint8))
return canny_viz, output_pil
if __name__ == "__main__":
# load the model
with gr.Blocks() as demo:
gr.Markdown("# Pix2pix-Turbo: **Canny Edge -> Image**")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources="upload", type="pil")
prompt = gr.Textbox(label="Prompt")
low_threshold = gr.Slider(
label="Canny low threshold",
minimum=1,
maximum=255,
value=100,
step=10,
)
high_threshold = gr.Slider(
label="Canny high threshold",
minimum=1,
maximum=255,
value=200,
step=10,
)
run_button = gr.Button(value="Run")
with gr.Column():
result_canny = gr.Image(type="pil")
with gr.Column():
result_output = gr.Image(type="pil")
prompt.submit(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
low_threshold.change(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
high_threshold.change(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
run_button.click(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
demo.queue()
demo.launch(debug=True, share=False)