""" Copyright 2023 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import multiprocessing as mp import os import subprocess as sp import sys import torch from shutil import copyfile import utils import glob MODEL_ID = "runwayml/stable-diffusion-v1-5" MODEL_ID_CLIP = "openai/clip-vit-base-patch32" device = "cuda" if torch.cuda.is_available() else "cpu" def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--parent_data_dir", type=str, help="Path to directory with the training samples") parser.add_argument("--node", type=str, help="which node to split (v0, v1..) the corresponding images should be under 'parent_data_dir/vi'") parser.add_argument("--test_name", type=str, default="test", help="your GPU id") parser.add_argument("--max_train_steps", type=int, default=201, help="your GPU id") parser.add_argument("--GPU_ID", type=int, default=0, help="your GPU id") parser.add_argument("--multiprocess", type=int, default=0) args = parser.parse_args() return args def run_seed(args, seed): print("seed", seed) exit_code = sp.run(["accelerate", "launch", "--gpu_ids", f"{args.GPU_ID}", "textual_inversion_decomposed.py", "--train_data_dir", f"input_concepts/{args.parent_data_dir}/{args.node}", "--placeholder_token", "<*> <&>", "--validation_prompt", "<*>,<&>,<*> <&>", "--output_dir", f"outputs/{args.parent_data_dir}/{args.node}/{args.test_name}_seed{seed}/", "--seed", f"{seed}", "--max_train_steps", f"{args.max_train_steps}", "--validation_steps", "100" ]) if exit_code.returncode: sys.exit(1) if __name__ == "__main__": args = parse_args() training_data_dir = f"input_concepts/{args.parent_data_dir}/{args.node}" if not os.path.exists(training_data_dir): raise AssertionError("There is no data in " + training_data_dir) files = glob.glob(f"{training_data_dir}/*.png") + glob.glob(f"{training_data_dir}/*.jpg") + glob.glob(f"{training_data_dir}/*.jpeg") if not len(files) > 1: if not os.path.exists(f"{training_data_dir}/embeds.bin"): raise AssertionError("There is no child code in [" + training_data_dir + "/embeds.bin] to generate the data. Please run with parent node first.") print("Generating dataset...") utils.generate_training_data(f"{training_data_dir}/embeds.bin", args.node, training_data_dir, device, MODEL_ID, MODEL_ID_CLIP) # run textual inversion for 200 steps if args.multiprocess: ncpus = 10 P = mp.Pool(ncpus) # Generate pool of workers seeds = [0, 1000, 1234, 111] for seed in seeds: if args.multiprocess: P.apply_async(run_seed, (args, seed)) else: run_seed(args, seed) if args.multiprocess: P.close() P.join() # start processes # Run seed selection sp.run(["python", "seed_selection.py", "--path_to_new_tokens", f"outputs/{args.parent_data_dir}", "--node", f"{args.node}"]) seeds_scores = torch.load(f"outputs/{args.parent_data_dir}/{args.node}/consistency_test/seed_scores.bin") best_seed = max(seeds_scores, key=lambda k: seeds_scores[k]) print(f"Best seed [{best_seed}]") # Continue textual inversion print(f"Resume running with seed [{best_seed}]...") exit_code = sp.run(["accelerate", "launch", "--gpu_ids", f"{args.GPU_ID}", "textual_inversion_decomposed.py", "--train_data_dir", f"input_concepts/{args.parent_data_dir}/{args.node}", "--placeholder_token", "<*> <&>", "--validation_prompt", "<*>,<&>,<*> <&>", "--output_dir", f"outputs/{args.parent_data_dir}/{args.node}/{args.test_name}_seed{best_seed}/", "--seed", f"{best_seed}", "--max_train_steps", f"{1000}", "--validation_steps", "100", "--resume_from_checkpoint", f"outputs/{args.parent_data_dir}/{args.node}/{args.node}_seed{best_seed}/checkpoint-200", "--checkpointing_steps", "2000" ]) copyfile(f"outputs/{args.parent_data_dir}/{args.node}/{args.node}_seed{best_seed}/learned_embeds.bin", f"outputs/{args.parent_data_dir}/{args.node}/learned_embeds.bin") copyfile(f"outputs/{args.parent_data_dir}/{args.node}/{args.node}_seed{best_seed}/learned_embeds-steps-1000.bin", f"outputs/{args.parent_data_dir}/{args.node}/learned_embeds-steps-1000.bin") # Saves some samples of the final node utils.save_children_nodes(args.node, f"outputs/{args.parent_data_dir}/{args.node}/learned_embeds-steps-1000.bin", f"input_concepts/{args.parent_data_dir}", device, MODEL_ID, MODEL_ID_CLIP) utils.save_rev_samples(f"outputs/{args.parent_data_dir}/{args.node}", f"outputs/{args.parent_data_dir}/{args.node}/learned_embeds-steps-1000.bin", MODEL_ID, device)