shreyajn commited on
Commit
a32f635
1 Parent(s): 8d2a9f8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +15 -32
README.md CHANGED
@@ -37,8 +37,8 @@ More details on model performance across various devices, can be found
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.645 ms | 0 - 2 MB | FP16 | NPU | [ConvNext-Tiny.tflite](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.795 ms | 0 - 183 MB | FP16 | NPU | [ConvNext-Tiny.so](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.so)
42
 
43
 
44
 
@@ -99,9 +99,9 @@ python -m qai_hub_models.models.convnext_tiny.export
99
  ```
100
  Profile Job summary of ConvNext-Tiny
101
  --------------------------------------------------
102
- Device: SA8255 (Proxy) (13)
103
- Estimated Inference Time: 3.78 ms
104
- Estimated Peak Memory Range: 0.02-182.33 MB
105
  Compute Units: NPU (223) | Total (223)
106
 
107
 
@@ -123,29 +123,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
123
  import torch
124
 
125
  import qai_hub as hub
126
- from qai_hub_models.models.convnext_tiny import Model
127
 
128
  # Load the model
129
- torch_model = Model.from_pretrained()
130
 
131
  # Device
132
  device = hub.Device("Samsung Galaxy S23")
133
 
134
- # Trace model
135
- input_shape = torch_model.get_input_spec()
136
- sample_inputs = torch_model.sample_inputs()
137
-
138
- pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
139
-
140
- # Compile model on a specific device
141
- compile_job = hub.submit_compile_job(
142
- model=pt_model,
143
- device=device,
144
- input_specs=torch_model.get_input_spec(),
145
- )
146
-
147
- # Get target model to run on-device
148
- target_model = compile_job.get_target_model()
149
 
150
  ```
151
 
@@ -158,10 +142,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
158
  provided job URL to view a variety of on-device performance metrics.
159
  ```python
160
  profile_job = hub.submit_profile_job(
161
- model=target_model,
162
- device=device,
163
- )
164
-
165
  ```
166
 
167
  Step 3: **Verify on-device accuracy**
@@ -171,12 +155,11 @@ on sample input data on the same cloud hosted device.
171
  ```python
172
  input_data = torch_model.sample_inputs()
173
  inference_job = hub.submit_inference_job(
174
- model=target_model,
175
- device=device,
176
- inputs=input_data,
177
- )
178
-
179
- on_device_output = inference_job.download_output_data()
180
 
181
  ```
182
  With the output of the model, you can compute like PSNR, relative errors or
 
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.646 ms | 0 - 2 MB | FP16 | NPU | [ConvNext-Tiny.tflite](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.806 ms | 0 - 192 MB | FP16 | NPU | [ConvNext-Tiny.so](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.so)
42
 
43
 
44
 
 
99
  ```
100
  Profile Job summary of ConvNext-Tiny
101
  --------------------------------------------------
102
+ Device: Snapdragon X Elite CRD (11)
103
+ Estimated Inference Time: 3.97 ms
104
+ Estimated Peak Memory Range: 0.57-0.57 MB
105
  Compute Units: NPU (223) | Total (223)
106
 
107
 
 
123
  import torch
124
 
125
  import qai_hub as hub
126
+ from qai_hub_models.models.convnext_tiny import
127
 
128
  # Load the model
 
129
 
130
  # Device
131
  device = hub.Device("Samsung Galaxy S23")
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  ```
135
 
 
142
  provided job URL to view a variety of on-device performance metrics.
143
  ```python
144
  profile_job = hub.submit_profile_job(
145
+ model=target_model,
146
+ device=device,
147
+ )
148
+
149
  ```
150
 
151
  Step 3: **Verify on-device accuracy**
 
155
  ```python
156
  input_data = torch_model.sample_inputs()
157
  inference_job = hub.submit_inference_job(
158
+ model=target_model,
159
+ device=device,
160
+ inputs=input_data,
161
+ )
162
+ on_device_output = inference_job.download_output_data()
 
163
 
164
  ```
165
  With the output of the model, you can compute like PSNR, relative errors or