qaihm-bot commited on
Commit
ec67cb9
1 Parent(s): 3e3ddfb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +11 -5
README.md CHANGED
@@ -33,10 +33,13 @@ More details on model performance across various devices, can be found
33
  - Model size: 109 MB
34
 
35
 
 
 
36
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
  | ---|---|---|---|---|---|---|---|
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.749 ms | 3 - 71 MB | FP16 | NPU | [ConvNext-Tiny.tflite](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.tflite)
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.812 ms | 0 - 193 MB | FP16 | NPU | [ConvNext-Tiny.so](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.so)
 
40
 
41
 
42
  ## Installation
@@ -97,15 +100,17 @@ python -m qai_hub_models.models.convnext_tiny.export
97
  Profile Job summary of ConvNext-Tiny
98
  --------------------------------------------------
99
  Device: Snapdragon X Elite CRD (11)
100
- Estimated Inference Time: 3.93 ms
101
  Estimated Peak Memory Range: 0.57-0.57 MB
102
  Compute Units: NPU (223) | Total (223)
103
 
104
 
105
  ```
 
 
106
  ## How does this work?
107
 
108
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/ConvNext-Tiny/export.py)
109
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
110
  on-device. Lets go through each step below in detail:
111
 
@@ -182,6 +187,7 @@ spot check the output with expected output.
182
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
183
 
184
 
 
185
  ## Run demo on a cloud-hosted device
186
 
187
  You can also run the demo on-device.
@@ -218,7 +224,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
218
  ## License
219
  - The license for the original implementation of ConvNext-Tiny can be found
220
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
221
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
222
 
223
  ## References
224
  * [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
 
33
  - Model size: 109 MB
34
 
35
 
36
+
37
+
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.717 ms | 0 - 3 MB | FP16 | NPU | [ConvNext-Tiny.tflite](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.769 ms | 0 - 193 MB | FP16 | NPU | [ConvNext-Tiny.so](https://huggingface.co/qualcomm/ConvNext-Tiny/blob/main/ConvNext-Tiny.so)
42
+
43
 
44
 
45
  ## Installation
 
100
  Profile Job summary of ConvNext-Tiny
101
  --------------------------------------------------
102
  Device: Snapdragon X Elite CRD (11)
103
+ Estimated Inference Time: 3.91 ms
104
  Estimated Peak Memory Range: 0.57-0.57 MB
105
  Compute Units: NPU (223) | Total (223)
106
 
107
 
108
  ```
109
+
110
+
111
  ## How does this work?
112
 
113
+ This [export script](https://aihub.qualcomm.com/models/convnext_tiny/qai_hub_models/models/ConvNext-Tiny/export.py)
114
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
115
  on-device. Lets go through each step below in detail:
116
 
 
187
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
188
 
189
 
190
+
191
  ## Run demo on a cloud-hosted device
192
 
193
  You can also run the demo on-device.
 
224
  ## License
225
  - The license for the original implementation of ConvNext-Tiny can be found
226
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
227
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
228
 
229
  ## References
230
  * [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)