Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -37,48 +37,47 @@ More details on model performance across various devices, can be found
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
-
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE |
|
41 |
-
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 23.
|
42 |
-
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 15.
|
43 |
-
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 8.
|
44 |
-
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 17.
|
45 |
-
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 11.
|
46 |
-
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
47 |
-
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 18.
|
48 |
-
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
49 |
-
| FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 51.
|
50 |
-
| FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN |
|
51 |
-
| FFNet-78S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE |
|
52 |
-
| FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 11.
|
53 |
-
| FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 20.
|
54 |
-
| FFNet-78S-Quantized | SA7255P ADP | SA7255P | TFLITE | 157.
|
55 |
-
| FFNet-78S-Quantized | SA7255P ADP | SA7255P | QNN | 170.
|
56 |
-
| FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11.
|
57 |
-
| FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 20.
|
58 |
-
| FFNet-78S-Quantized | SA8295P ADP | SA8295P | TFLITE | 19.
|
59 |
-
| FFNet-78S-Quantized | SA8295P ADP | SA8295P | QNN | 28.
|
60 |
-
| FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 12.
|
61 |
-
| FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.
|
62 |
-
| FFNet-78S-Quantized | SA8775P ADP | SA8775P | TFLITE | 15.
|
63 |
-
| FFNet-78S-Quantized | SA8775P ADP | SA8775P | QNN | 25.
|
64 |
-
| FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 14.
|
65 |
-
| FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 25.
|
66 |
-
| FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN |
|
67 |
-
| FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 15.
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
## Installation
|
73 |
|
74 |
-
This model can be installed as a Python package via pip.
|
75 |
|
|
|
76 |
```bash
|
77 |
-
pip install "qai-hub-models[
|
78 |
```
|
79 |
|
80 |
|
81 |
-
|
82 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
83 |
|
84 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -129,8 +128,8 @@ Profiling Results
|
|
129 |
FFNet-78S-Quantized
|
130 |
Device : Samsung Galaxy S23 (13)
|
131 |
Runtime : TFLITE
|
132 |
-
Estimated inference time (ms) :
|
133 |
-
Estimated peak memory usage (MB): [1,
|
134 |
Total # Ops : 153
|
135 |
Compute Unit(s) : NPU (153 ops)
|
136 |
```
|
@@ -157,7 +156,7 @@ from qai_hub_models.models.ffnet_78s_quantized import Model
|
|
157 |
torch_model = Model.from_pretrained()
|
158 |
|
159 |
# Device
|
160 |
-
device = hub.Device("Samsung Galaxy
|
161 |
|
162 |
# Trace model
|
163 |
input_shape = torch_model.get_input_spec()
|
@@ -235,7 +234,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
235 |
|
236 |
|
237 |
## License
|
238 |
-
* The license for the original implementation of FFNet-78S-Quantized can be found
|
|
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
+
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 12.056 ms | 1 - 17 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
41 |
+
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 23.841 ms | 6 - 20 MB | INT8 | NPU | [FFNet-78S-Quantized.so](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.so) |
|
42 |
+
| FFNet-78S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 15.52 ms | 1 - 55 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
43 |
+
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 8.688 ms | 0 - 39 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
44 |
+
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 17.248 ms | 6 - 41 MB | INT8 | NPU | [FFNet-78S-Quantized.so](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.so) |
|
45 |
+
| FFNet-78S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 11.051 ms | 7 - 62 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
46 |
+
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 8.815 ms | 1 - 39 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
47 |
+
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 18.055 ms | 6 - 44 MB | INT8 | NPU | Use Export Script |
|
48 |
+
| FFNet-78S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.988 ms | 7 - 57 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
49 |
+
| FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 51.048 ms | 1 - 41 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
50 |
+
| FFNet-78S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 94.03 ms | 6 - 17 MB | INT8 | NPU | Use Export Script |
|
51 |
+
| FFNet-78S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 341.347 ms | 1 - 3 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
52 |
+
| FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 11.926 ms | 1 - 21 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
53 |
+
| FFNet-78S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 20.602 ms | 6 - 9 MB | INT8 | NPU | Use Export Script |
|
54 |
+
| FFNet-78S-Quantized | SA7255P ADP | SA7255P | TFLITE | 157.061 ms | 1 - 31 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
55 |
+
| FFNet-78S-Quantized | SA7255P ADP | SA7255P | QNN | 170.775 ms | 6 - 14 MB | INT8 | NPU | Use Export Script |
|
56 |
+
| FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11.933 ms | 1 - 16 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
57 |
+
| FFNet-78S-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 20.612 ms | 6 - 9 MB | INT8 | NPU | Use Export Script |
|
58 |
+
| FFNet-78S-Quantized | SA8295P ADP | SA8295P | TFLITE | 19.092 ms | 0 - 36 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
59 |
+
| FFNet-78S-Quantized | SA8295P ADP | SA8295P | QNN | 28.477 ms | 6 - 20 MB | INT8 | NPU | Use Export Script |
|
60 |
+
| FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 12.108 ms | 1 - 15 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
61 |
+
| FFNet-78S-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.607 ms | 6 - 9 MB | INT8 | NPU | Use Export Script |
|
62 |
+
| FFNet-78S-Quantized | SA8775P ADP | SA8775P | TFLITE | 15.238 ms | 1 - 31 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
63 |
+
| FFNet-78S-Quantized | SA8775P ADP | SA8775P | QNN | 25.986 ms | 6 - 16 MB | INT8 | NPU | Use Export Script |
|
64 |
+
| FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 14.358 ms | 1 - 37 MB | INT8 | NPU | [FFNet-78S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.tflite) |
|
65 |
+
| FFNet-78S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 25.538 ms | 6 - 38 MB | INT8 | NPU | Use Export Script |
|
66 |
+
| FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.572 ms | 6 - 6 MB | INT8 | NPU | Use Export Script |
|
67 |
+
| FFNet-78S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 15.931 ms | 24 - 24 MB | INT8 | NPU | [FFNet-78S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-78S-Quantized/blob/main/FFNet-78S-Quantized.onnx) |
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
## Installation
|
73 |
|
|
|
74 |
|
75 |
+
Install the package via pip:
|
76 |
```bash
|
77 |
+
pip install "qai-hub-models[ffnet-78s-quantized]"
|
78 |
```
|
79 |
|
80 |
|
|
|
81 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
82 |
|
83 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
128 |
FFNet-78S-Quantized
|
129 |
Device : Samsung Galaxy S23 (13)
|
130 |
Runtime : TFLITE
|
131 |
+
Estimated inference time (ms) : 12.1
|
132 |
+
Estimated peak memory usage (MB): [1, 17]
|
133 |
Total # Ops : 153
|
134 |
Compute Unit(s) : NPU (153 ops)
|
135 |
```
|
|
|
156 |
torch_model = Model.from_pretrained()
|
157 |
|
158 |
# Device
|
159 |
+
device = hub.Device("Samsung Galaxy S24")
|
160 |
|
161 |
# Trace model
|
162 |
input_shape = torch_model.get_input_spec()
|
|
|
234 |
|
235 |
|
236 |
## License
|
237 |
+
* The license for the original implementation of FFNet-78S-Quantized can be found
|
238 |
+
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|