qaihm-bot commited on
Commit
efeb45f
1 Parent(s): c9a42b9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +32 -18
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
 
15
  The Fast Segment Anything Model (FastSAM) is a novel, real-time CNN-based solution for the Segment Anything task. This task is designed to segment any object within an image based on various possible user interaction prompts. The model performs competitively despite significantly reduced computation, making it a practical choice for a variety of vision tasks.
16
 
17
- This model is an implementation of FastSam-S found [here](https://github.com/CASIA-IVA-Lab/FastSAM).
18
  This repository provides scripts to run FastSam-S on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/fastsam_s).
@@ -30,14 +30,24 @@ More details on model performance across various devices, can be found
30
  - Number of parameters: 11.8M
31
  - Model size: 45.1 MB
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
 
36
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
- | ---|---|---|---|---|---|---|---|
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 8.062 ms | 6 - 22 MB | FP16 | NPU | [FastSam-S.so](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.so)
39
-
40
-
41
 
42
  ## Installation
43
 
@@ -93,16 +103,16 @@ device. This script does the following:
93
  ```bash
94
  python -m qai_hub_models.models.fastsam_s.export
95
  ```
96
-
97
  ```
98
- Profile Job summary of FastSam-S
99
- --------------------------------------------------
100
- Device: Snapdragon X Elite CRD (11)
101
- Estimated Inference Time: 8.38 ms
102
- Estimated Peak Memory Range: 4.70-4.70 MB
103
- Compute Units: NPU (286) | Total (286)
104
-
105
-
 
106
  ```
107
 
108
 
@@ -201,15 +211,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
201
  Get more details on FastSam-S's performance across various devices [here](https://aihub.qualcomm.com/models/fastsam_s).
202
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
203
 
 
204
  ## License
205
- - The license for the original implementation of FastSam-S can be found
206
- [here](https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/LICENSE).
207
- - The license for the compiled assets for on-device deployment can be found [here](https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/LICENSE)
 
208
 
209
  ## References
210
  * [Fast Segment Anything](https://arxiv.org/abs/2306.12156)
211
  * [Source Model Implementation](https://github.com/CASIA-IVA-Lab/FastSAM)
212
 
 
 
213
  ## Community
214
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
215
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
14
 
15
  The Fast Segment Anything Model (FastSAM) is a novel, real-time CNN-based solution for the Segment Anything task. This task is designed to segment any object within an image based on various possible user interaction prompts. The model performs competitively despite significantly reduced computation, making it a practical choice for a variety of vision tasks.
16
 
17
+ This model is an implementation of FastSam-S found [here]({source_repo}).
18
  This repository provides scripts to run FastSam-S on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/fastsam_s).
 
30
  - Number of parameters: 11.8M
31
  - Model size: 45.1 MB
32
 
33
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
+ |---|---|---|---|---|---|---|---|---|
35
+ | FastSam-S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 8.064 ms | 4 - 18 MB | FP16 | NPU | [FastSam-S.so](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.so) |
36
+ | FastSam-S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.58 ms | 4 - 25 MB | FP16 | NPU | [FastSam-S.onnx](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.onnx) |
37
+ | FastSam-S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 6.96 ms | 5 - 38 MB | FP16 | NPU | [FastSam-S.so](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.so) |
38
+ | FastSam-S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.273 ms | 1 - 81 MB | FP16 | NPU | [FastSam-S.onnx](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.onnx) |
39
+ | FastSam-S | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 7.38 ms | 5 - 10 MB | FP16 | NPU | Use Export Script |
40
+ | FastSam-S | SA8255 (Proxy) | SA8255P Proxy | QNN | 7.689 ms | 5 - 10 MB | FP16 | NPU | Use Export Script |
41
+ | FastSam-S | SA8775 (Proxy) | SA8775P Proxy | QNN | 7.719 ms | 5 - 9 MB | FP16 | NPU | Use Export Script |
42
+ | FastSam-S | SA8650 (Proxy) | SA8650P Proxy | QNN | 7.618 ms | 5 - 8 MB | FP16 | NPU | Use Export Script |
43
+ | FastSam-S | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 13.749 ms | 5 - 42 MB | FP16 | NPU | Use Export Script |
44
+ | FastSam-S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 5.49 ms | 5 - 36 MB | FP16 | NPU | Use Export Script |
45
+ | FastSam-S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 5.354 ms | 16 - 62 MB | FP16 | NPU | [FastSam-S.onnx](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.onnx) |
46
+ | FastSam-S | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 8.317 ms | 5 - 5 MB | FP16 | NPU | Use Export Script |
47
+ | FastSam-S | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.903 ms | 21 - 21 MB | FP16 | NPU | [FastSam-S.onnx](https://huggingface.co/qualcomm/FastSam-S/blob/main/FastSam-S.onnx) |
48
 
49
 
50
 
 
 
 
 
 
51
 
52
  ## Installation
53
 
 
103
  ```bash
104
  python -m qai_hub_models.models.fastsam_s.export
105
  ```
 
106
  ```
107
+ Profiling Results
108
+ ------------------------------------------------------------
109
+ FastSam-S
110
+ Device : Samsung Galaxy S23 (13)
111
+ Runtime : QNN
112
+ Estimated inference time (ms) : 8.1
113
+ Estimated peak memory usage (MB): [4, 18]
114
+ Total # Ops : 286
115
+ Compute Unit(s) : NPU (286 ops)
116
  ```
117
 
118
 
 
211
  Get more details on FastSam-S's performance across various devices [here](https://aihub.qualcomm.com/models/fastsam_s).
212
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
213
 
214
+
215
  ## License
216
+ * The license for the original implementation of FastSam-S can be found [here](https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/LICENSE).
217
+ * The license for the compiled assets for on-device deployment can be found [here](https://github.com/CASIA-IVA-Lab/FastSAM/blob/main/LICENSE)
218
+
219
+
220
 
221
  ## References
222
  * [Fast Segment Anything](https://arxiv.org/abs/2306.12156)
223
  * [Source Model Implementation](https://github.com/CASIA-IVA-Lab/FastSAM)
224
 
225
+
226
+
227
  ## Community
228
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
229
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).