qaihm-bot commited on
Commit
0f64519
·
verified ·
1 Parent(s): 57adbf1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -8
README.md CHANGED
@@ -36,10 +36,10 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.85 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.205 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.88 ms | 2 - 7 MB | FP16 | NPU | [MediaPipePoseDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.so)
42
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.306 ms | 0 - 13 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.so)
43
 
44
 
45
 
@@ -101,14 +101,14 @@ python -m qai_hub_models.models.mediapipe_pose.export
101
  Profile Job summary of MediaPipePoseDetector
102
  --------------------------------------------------
103
  Device: Snapdragon X Elite CRD (11)
104
- Estimated Inference Time: 1.09 ms
105
- Estimated Peak Memory Range: 1.68-1.68 MB
106
  Compute Units: NPU (139) | Total (139)
107
 
108
  Profile Job summary of MediaPipePoseLandmarkDetector
109
  --------------------------------------------------
110
  Device: Snapdragon X Elite CRD (11)
111
- Estimated Inference Time: 1.46 ms
112
  Estimated Peak Memory Range: 0.75-0.75 MB
113
  Compute Units: NPU (305) | Total (305)
114
 
@@ -135,7 +135,6 @@ from qai_hub_models.models.mediapipe_pose import Model
135
 
136
  # Load the model
137
  torch_model = Model.from_pretrained()
138
- torch_model.eval()
139
 
140
  # Device
141
  device = hub.Device("Samsung Galaxy S23")
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.826 ms | 0 - 1 MB | FP16 | NPU | [MediaPipePoseDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.229 ms | 0 - 3 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.879 ms | 0 - 4 MB | FP16 | NPU | [MediaPipePoseDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.so)
42
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.34 ms | 0 - 13 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.so)
43
 
44
 
45
 
 
101
  Profile Job summary of MediaPipePoseDetector
102
  --------------------------------------------------
103
  Device: Snapdragon X Elite CRD (11)
104
+ Estimated Inference Time: 1.00 ms
105
+ Estimated Peak Memory Range: 0.50-0.50 MB
106
  Compute Units: NPU (139) | Total (139)
107
 
108
  Profile Job summary of MediaPipePoseLandmarkDetector
109
  --------------------------------------------------
110
  Device: Snapdragon X Elite CRD (11)
111
+ Estimated Inference Time: 1.43 ms
112
  Estimated Peak Memory Range: 0.75-0.75 MB
113
  Compute Units: NPU (305) | Total (305)
114
 
 
135
 
136
  # Load the model
137
  torch_model = Model.from_pretrained()
 
138
 
139
  # Device
140
  device = hub.Device("Samsung Galaxy S23")