Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,10 +36,10 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library |
|
43 |
|
44 |
|
45 |
|
@@ -100,17 +100,17 @@ python -m qai_hub_models.models.mediapipe_pose.export
|
|
100 |
```
|
101 |
Profile Job summary of MediaPipePoseDetector
|
102 |
--------------------------------------------------
|
103 |
-
Device:
|
104 |
-
Estimated Inference Time: 0.
|
105 |
-
Estimated Peak Memory Range:
|
106 |
-
Compute Units: NPU (
|
107 |
|
108 |
Profile Job summary of MediaPipePoseLandmarkDetector
|
109 |
--------------------------------------------------
|
110 |
-
Device:
|
111 |
-
Estimated Inference Time: 1.
|
112 |
-
Estimated Peak Memory Range: 0.
|
113 |
-
Compute Units: NPU (
|
114 |
|
115 |
|
116 |
```
|
@@ -131,29 +131,49 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
131 |
import torch
|
132 |
|
133 |
import qai_hub as hub
|
134 |
-
from qai_hub_models.models.mediapipe_pose import
|
135 |
|
136 |
# Load the model
|
137 |
-
|
|
|
|
|
|
|
138 |
|
139 |
# Device
|
140 |
device = hub.Device("Samsung Galaxy S23")
|
141 |
|
|
|
142 |
# Trace model
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
|
148 |
# Compile model on a specific device
|
149 |
-
|
150 |
-
model=
|
151 |
device=device,
|
152 |
-
input_specs=
|
153 |
)
|
154 |
|
155 |
# Get target model to run on-device
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
```
|
159 |
|
@@ -165,10 +185,16 @@ After compiling models from step 1. Models can be profiled model on-device using
|
|
165 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
166 |
provided job URL to view a variety of on-device performance metrics.
|
167 |
```python
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
```
|
174 |
|
@@ -177,14 +203,20 @@ Step 3: **Verify on-device accuracy**
|
|
177 |
To verify the accuracy of the model on-device, you can run on-device inference
|
178 |
on sample input data on the same cloud hosted device.
|
179 |
```python
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
)
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
```
|
190 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.793 ms | 0 - 14 MB | FP16 | NPU | [MediaPipePoseDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.839 ms | 0 - 174 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite)
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.851 ms | 0 - 102 MB | FP16 | NPU | [MediaPipePoseDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.so)
|
42 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.906 ms | 0 - 9 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.so)
|
43 |
|
44 |
|
45 |
|
|
|
100 |
```
|
101 |
Profile Job summary of MediaPipePoseDetector
|
102 |
--------------------------------------------------
|
103 |
+
Device: Snapdragon X Elite CRD (11)
|
104 |
+
Estimated Inference Time: 0.99 ms
|
105 |
+
Estimated Peak Memory Range: 1.61-1.61 MB
|
106 |
+
Compute Units: NPU (138) | Total (138)
|
107 |
|
108 |
Profile Job summary of MediaPipePoseLandmarkDetector
|
109 |
--------------------------------------------------
|
110 |
+
Device: Snapdragon X Elite CRD (11)
|
111 |
+
Estimated Inference Time: 1.11 ms
|
112 |
+
Estimated Peak Memory Range: 0.75-0.75 MB
|
113 |
+
Compute Units: NPU (290) | Total (290)
|
114 |
|
115 |
|
116 |
```
|
|
|
131 |
import torch
|
132 |
|
133 |
import qai_hub as hub
|
134 |
+
from qai_hub_models.models.mediapipe_pose import MediaPipePoseDetector,MediaPipePoseLandmarkDetector
|
135 |
|
136 |
# Load the model
|
137 |
+
pose_detector_model = MediaPipePoseDetector.from_pretrained()
|
138 |
+
|
139 |
+
pose_landmark_detector_model = MediaPipePoseLandmarkDetector.from_pretrained()
|
140 |
+
|
141 |
|
142 |
# Device
|
143 |
device = hub.Device("Samsung Galaxy S23")
|
144 |
|
145 |
+
|
146 |
# Trace model
|
147 |
+
pose_detector_input_shape = pose_detector_model.get_input_spec()
|
148 |
+
pose_detector_sample_inputs = pose_detector_model.sample_inputs()
|
149 |
|
150 |
+
traced_pose_detector_model = torch.jit.trace(pose_detector_model, [torch.tensor(data[0]) for _, data in pose_detector_sample_inputs.items()])
|
151 |
|
152 |
# Compile model on a specific device
|
153 |
+
pose_detector_compile_job = hub.submit_compile_job(
|
154 |
+
model=traced_pose_detector_model ,
|
155 |
device=device,
|
156 |
+
input_specs=pose_detector_model.get_input_spec(),
|
157 |
)
|
158 |
|
159 |
# Get target model to run on-device
|
160 |
+
pose_detector_target_model = pose_detector_compile_job.get_target_model()
|
161 |
+
|
162 |
+
# Trace model
|
163 |
+
pose_landmark_detector_input_shape = pose_landmark_detector_model.get_input_spec()
|
164 |
+
pose_landmark_detector_sample_inputs = pose_landmark_detector_model.sample_inputs()
|
165 |
+
|
166 |
+
traced_pose_landmark_detector_model = torch.jit.trace(pose_landmark_detector_model, [torch.tensor(data[0]) for _, data in pose_landmark_detector_sample_inputs.items()])
|
167 |
+
|
168 |
+
# Compile model on a specific device
|
169 |
+
pose_landmark_detector_compile_job = hub.submit_compile_job(
|
170 |
+
model=traced_pose_landmark_detector_model ,
|
171 |
+
device=device,
|
172 |
+
input_specs=pose_landmark_detector_model.get_input_spec(),
|
173 |
+
)
|
174 |
+
|
175 |
+
# Get target model to run on-device
|
176 |
+
pose_landmark_detector_target_model = pose_landmark_detector_compile_job.get_target_model()
|
177 |
|
178 |
```
|
179 |
|
|
|
185 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
186 |
provided job URL to view a variety of on-device performance metrics.
|
187 |
```python
|
188 |
+
|
189 |
+
pose_detector_profile_job = hub.submit_profile_job(
|
190 |
+
model=pose_detector_target_model,
|
191 |
+
device=device,
|
192 |
+
)
|
193 |
+
|
194 |
+
pose_landmark_detector_profile_job = hub.submit_profile_job(
|
195 |
+
model=pose_landmark_detector_target_model,
|
196 |
+
device=device,
|
197 |
+
)
|
198 |
|
199 |
```
|
200 |
|
|
|
203 |
To verify the accuracy of the model on-device, you can run on-device inference
|
204 |
on sample input data on the same cloud hosted device.
|
205 |
```python
|
206 |
+
pose_detector_input_data = pose_detector_model.sample_inputs()
|
207 |
+
pose_detector_inference_job = hub.submit_inference_job(
|
208 |
+
model=pose_detector_target_model,
|
209 |
+
device=device,
|
210 |
+
inputs=pose_detector_input_data,
|
211 |
+
)
|
212 |
+
pose_detector_inference_job.download_output_data()
|
213 |
+
pose_landmark_detector_input_data = pose_landmark_detector_model.sample_inputs()
|
214 |
+
pose_landmark_detector_inference_job = hub.submit_inference_job(
|
215 |
+
model=pose_landmark_detector_target_model,
|
216 |
+
device=device,
|
217 |
+
inputs=pose_landmark_detector_input_data,
|
218 |
+
)
|
219 |
+
pose_landmark_detector_inference_job.download_output_data()
|
220 |
|
221 |
```
|
222 |
With the output of the model, you can compute like PSNR, relative errors or
|