shreyajn commited on
Commit
30282d9
1 Parent(s): baa96c0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +223 -0
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: apache-2.0
4
+ pipeline_tag: image-segmentation
5
+ tags:
6
+ - android
7
+
8
+ ---
9
+
10
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_selfie/web-assets/banner.png)
11
+
12
+ # MediaPipe-Selfie-Segmentation: Optimized for Mobile Deployment
13
+ ## Segments the person from background in a selfie image and realtime background segmentation in video conferencing
14
+
15
+ Light-weight model that segments a person from the background in square or landscape selfie and video conference imagery.
16
+
17
+ This model is an implementation of MediaPipe-Selfie-Segmentation found [here](https://github.com/google/mediapipe/tree/master/mediapipe/modules/selfie_segmentation).
18
+ This repository provides scripts to run MediaPipe-Selfie-Segmentation on Qualcomm® devices.
19
+ More details on model performance across various devices, can be found
20
+ [here](https://aihub.qualcomm.com/models/mediapipe_selfie).
21
+
22
+
23
+ ### Model Details
24
+
25
+ - **Model Type:** Semantic segmentation
26
+ - **Model Stats:**
27
+ - Model checkpoint: Square
28
+ - Input resolution (Square): 256x256
29
+ - Input resolution (Landscape): 144x256
30
+ - Number of parameters: 106K
31
+ - Model size: 454 KB
32
+
33
+
34
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
+ | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.817 ms | 0 - 2 MB | FP16 | NPU | [MediaPipe-Selfie-Segmentation.tflite](https://huggingface.co/qualcomm/MediaPipe-Selfie-Segmentation/blob/main/MediaPipe-Selfie-Segmentation.tflite)
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.801 ms | 1 - 87 MB | FP16 | NPU | [MediaPipe-Selfie-Segmentation.so](https://huggingface.co/qualcomm/MediaPipe-Selfie-Segmentation/blob/main/MediaPipe-Selfie-Segmentation.so)
38
+
39
+
40
+ ## Installation
41
+
42
+ This model can be installed as a Python package via pip.
43
+
44
+ ```bash
45
+ pip install "qai-hub-models[mediapipe_selfie]"
46
+ ```
47
+
48
+
49
+
50
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
51
+
52
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
53
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
54
+
55
+ With this API token, you can configure your client to run models on the cloud
56
+ hosted devices.
57
+ ```bash
58
+ qai-hub configure --api_token API_TOKEN
59
+ ```
60
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
61
+
62
+
63
+
64
+ ## Demo off target
65
+
66
+ The package contains a simple end-to-end demo that downloads pre-trained
67
+ weights and runs this model on a sample input.
68
+
69
+ ```bash
70
+ python -m qai_hub_models.models.mediapipe_selfie.demo
71
+ ```
72
+
73
+ The above demo runs a reference implementation of pre-processing, model
74
+ inference, and post processing.
75
+
76
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
77
+ environment, please add the following to your cell (instead of the above).
78
+ ```
79
+ %run -m qai_hub_models.models.mediapipe_selfie.demo
80
+ ```
81
+
82
+
83
+ ### Run model on a cloud-hosted device
84
+
85
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
86
+ device. This script does the following:
87
+ * Performance check on-device on a cloud-hosted device
88
+ * Downloads compiled assets that can be deployed on-device for Android.
89
+ * Accuracy check between PyTorch and on-device outputs.
90
+
91
+ ```bash
92
+ python -m qai_hub_models.models.mediapipe_selfie.export
93
+ ```
94
+
95
+ ```
96
+ Profile Job summary of MediaPipe-Selfie-Segmentation
97
+ --------------------------------------------------
98
+ Device: Samsung Galaxy S23 Ultra (13)
99
+ Estimated Inference Time: 0.82 ms
100
+ Estimated Peak Memory Range: 0.01-1.72 MB
101
+ Compute Units: NPU (118) | Total (118)
102
+
103
+ Profile Job summary of MediaPipe-Selfie-Segmentation
104
+ --------------------------------------------------
105
+ Device: Samsung Galaxy S23 Ultra (13)
106
+ Estimated Inference Time: 0.80 ms
107
+ Estimated Peak Memory Range: 0.77-86.94 MB
108
+ Compute Units: NPU (139) | Total (139)
109
+
110
+
111
+ ```
112
+ ## How does this work?
113
+
114
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/MediaPipe-Selfie-Segmentation/export.py)
115
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
116
+ on-device. Lets go through each step below in detail:
117
+
118
+ Step 1: **Compile model for on-device deployment**
119
+
120
+ To compile a PyTorch model for on-device deployment, we first trace the model
121
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
122
+
123
+ ```python
124
+ import torch
125
+
126
+ import qai_hub as hub
127
+ from qai_hub_models.models.mediapipe_selfie import Model
128
+
129
+ # Load the model
130
+ torch_model = Model.from_pretrained()
131
+ torch_model.eval()
132
+
133
+ # Device
134
+ device = hub.Device("Samsung Galaxy S23")
135
+
136
+ # Trace model
137
+ input_shape = torch_model.get_input_spec()
138
+ sample_inputs = torch_model.sample_inputs()
139
+
140
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
141
+
142
+ # Compile model on a specific device
143
+ compile_job = hub.submit_compile_job(
144
+ model=pt_model,
145
+ device=device,
146
+ input_specs=torch_model.get_input_spec(),
147
+ )
148
+
149
+ # Get target model to run on-device
150
+ target_model = compile_job.get_target_model()
151
+
152
+ ```
153
+
154
+
155
+ Step 2: **Performance profiling on cloud-hosted device**
156
+
157
+ After compiling models from step 1. Models can be profiled model on-device using the
158
+ `target_model`. Note that this scripts runs the model on a device automatically
159
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
160
+ provided job URL to view a variety of on-device performance metrics.
161
+ ```python
162
+ profile_job = hub.submit_profile_job(
163
+ model=target_model,
164
+ device=device,
165
+ )
166
+
167
+ ```
168
+
169
+ Step 3: **Verify on-device accuracy**
170
+
171
+ To verify the accuracy of the model on-device, you can run on-device inference
172
+ on sample input data on the same cloud hosted device.
173
+ ```python
174
+ input_data = torch_model.sample_inputs()
175
+ inference_job = hub.submit_inference_job(
176
+ model=target_model,
177
+ device=device,
178
+ inputs=input_data,
179
+ )
180
+
181
+ on_device_output = inference_job.download_output_data()
182
+
183
+ ```
184
+ With the output of the model, you can compute like PSNR, relative errors or
185
+ spot check the output with expected output.
186
+
187
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
188
+ AI Hub. [Sign up for early access](https://aihub.qualcomm.com/sign-up).
189
+
190
+
191
+
192
+ ## Deploying compiled model to Android
193
+
194
+
195
+ The models can be deployed using multiple runtimes:
196
+ - TensorFlow Lite (`.tflite` export): [This
197
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
198
+ guide to deploy the .tflite model in an Android application.
199
+
200
+
201
+ - QNN (`.so` export ): This [sample
202
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
203
+ provides instructions on how to use the `.so` shared library in an Android application.
204
+
205
+
206
+ ## View on Qualcomm® AI Hub
207
+ Get more details on MediaPipe-Selfie-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_selfie).
208
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
209
+
210
+ ## License
211
+ - The license for the original implementation of MediaPipe-Selfie-Segmentation can be found
212
+ [here](https://github.com/google/mediapipe/blob/master/LICENSE).
213
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
214
+
215
+ ## References
216
+ * [Image segmentation guide](https://developers.google.com/mediapipe/solutions/vision/image_segmenter/)
217
+ * [Source Model Implementation](https://github.com/google/mediapipe/tree/master/mediapipe/modules/selfie_segmentation)
218
+
219
+ ## Community
220
+ * Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
221
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
222
+
223
+