qaihm-bot commited on
Commit
e3b0c2f
1 Parent(s): 59de9df

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +227 -0
README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - coco
4
+ library_name: pytorch
5
+ license: bsd-3-clause
6
+ pipeline_tag: object-detection
7
+ tags:
8
+ - real_time
9
+ - android
10
+
11
+ ---
12
+
13
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/foot_track_net/web-assets/model_demo.png)
14
+
15
+ # Person-Foot-Detection: Optimized for Mobile Deployment
16
+ ## Multi-task Human detector
17
+
18
+ FootTrackNet can detect person and face bounding boxes, head and feet landmark locations and feet visibility.
19
+
20
+ This model is an implementation of Person-Foot-Detection found [here]({source_repo}).
21
+ This repository provides scripts to run Person-Foot-Detection on Qualcomm® devices.
22
+ More details on model performance across various devices, can be found
23
+ [here](https://aihub.qualcomm.com/models/foot_track_net).
24
+
25
+
26
+ ### Model Details
27
+
28
+ - **Model Type:** Object detection
29
+ - **Model Stats:**
30
+ - Inference latency: RealTime
31
+ - Input resolution: 640x480
32
+ - Number of output classes: 2
33
+ - Number of parameters: 2.53M
34
+ - Model size: 9.69 MB
35
+
36
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
+ |---|---|---|---|---|---|---|---|---|
38
+ | Person-Foot-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.484 ms | 0 - 25 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
39
+ | Person-Foot-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.592 ms | 4 - 12 MB | FP16 | NPU | [Person-Foot-Detection.so](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.so) |
40
+ | Person-Foot-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 5.293 ms | 15 - 18 MB | FP16 | NPU | [Person-Foot-Detection.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.onnx) |
41
+ | Person-Foot-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.884 ms | 0 - 55 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
42
+ | Person-Foot-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.046 ms | 4 - 21 MB | FP16 | NPU | [Person-Foot-Detection.so](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.so) |
43
+ | Person-Foot-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.623 ms | 0 - 66 MB | FP16 | NPU | [Person-Foot-Detection.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.onnx) |
44
+ | Person-Foot-Detection | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.339 ms | 0 - 2 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
45
+ | Person-Foot-Detection | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.293 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
46
+ | Person-Foot-Detection | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 3.382 ms | 0 - 109 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
47
+ | Person-Foot-Detection | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.365 ms | 3 - 4 MB | FP16 | NPU | Use Export Script |
48
+ | Person-Foot-Detection | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 3.443 ms | 0 - 41 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
49
+ | Person-Foot-Detection | SA8775 (Proxy) | SA8775P Proxy | QNN | 3.387 ms | 2 - 3 MB | FP16 | NPU | Use Export Script |
50
+ | Person-Foot-Detection | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 3.504 ms | 0 - 4 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
51
+ | Person-Foot-Detection | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.384 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
52
+ | Person-Foot-Detection | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.66 ms | 5 - 58 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
53
+ | Person-Foot-Detection | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.772 ms | 4 - 25 MB | FP16 | NPU | Use Export Script |
54
+ | Person-Foot-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.376 ms | 0 - 29 MB | FP16 | NPU | [Person-Foot-Detection.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.tflite) |
55
+ | Person-Foot-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.491 ms | 0 - 17 MB | FP16 | NPU | Use Export Script |
56
+ | Person-Foot-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 3.68 ms | 17 - 51 MB | FP16 | NPU | [Person-Foot-Detection.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.onnx) |
57
+ | Person-Foot-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.669 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
58
+ | Person-Foot-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.762 ms | 17 - 17 MB | FP16 | NPU | [Person-Foot-Detection.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection/blob/main/Person-Foot-Detection.onnx) |
59
+
60
+
61
+
62
+
63
+ ## Installation
64
+
65
+ This model can be installed as a Python package via pip.
66
+
67
+ ```bash
68
+ pip install qai-hub-models
69
+ ```
70
+
71
+
72
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
73
+
74
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
75
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
76
+
77
+ With this API token, you can configure your client to run models on the cloud
78
+ hosted devices.
79
+ ```bash
80
+ qai-hub configure --api_token API_TOKEN
81
+ ```
82
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
83
+
84
+
85
+
86
+ ## Demo off target
87
+
88
+ The package contains a simple end-to-end demo that downloads pre-trained
89
+ weights and runs this model on a sample input.
90
+
91
+ ```bash
92
+ python -m qai_hub_models.models.foot_track_net.demo
93
+ ```
94
+
95
+ The above demo runs a reference implementation of pre-processing, model
96
+ inference, and post processing.
97
+
98
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
99
+ environment, please add the following to your cell (instead of the above).
100
+ ```
101
+ %run -m qai_hub_models.models.foot_track_net.demo
102
+ ```
103
+
104
+
105
+ ### Run model on a cloud-hosted device
106
+
107
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
108
+ device. This script does the following:
109
+ * Performance check on-device on a cloud-hosted device
110
+ * Downloads compiled assets that can be deployed on-device for Android.
111
+ * Accuracy check between PyTorch and on-device outputs.
112
+
113
+ ```bash
114
+ python -m qai_hub_models.models.foot_track_net.export
115
+ ```
116
+ ```
117
+ Profiling Results
118
+ ------------------------------------------------------------
119
+ Person-Foot-Detection
120
+ Device : Samsung Galaxy S23 (13)
121
+ Runtime : TFLITE
122
+ Estimated inference time (ms) : 3.5
123
+ Estimated peak memory usage (MB): [0, 25]
124
+ Total # Ops : 134
125
+ Compute Unit(s) : NPU (134 ops)
126
+ ```
127
+
128
+
129
+ ## How does this work?
130
+
131
+ This [export script](https://aihub.qualcomm.com/models/foot_track_net/qai_hub_models/models/Person-Foot-Detection/export.py)
132
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
133
+ on-device. Lets go through each step below in detail:
134
+
135
+ Step 1: **Compile model for on-device deployment**
136
+
137
+ To compile a PyTorch model for on-device deployment, we first trace the model
138
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
139
+
140
+ ```python
141
+ import torch
142
+
143
+ import qai_hub as hub
144
+ from qai_hub_models.models.foot_track_net import
145
+
146
+ # Load the model
147
+
148
+ # Device
149
+ device = hub.Device("Samsung Galaxy S23")
150
+
151
+
152
+ ```
153
+
154
+
155
+ Step 2: **Performance profiling on cloud-hosted device**
156
+
157
+ After compiling models from step 1. Models can be profiled model on-device using the
158
+ `target_model`. Note that this scripts runs the model on a device automatically
159
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
160
+ provided job URL to view a variety of on-device performance metrics.
161
+ ```python
162
+ profile_job = hub.submit_profile_job(
163
+ model=target_model,
164
+ device=device,
165
+ )
166
+
167
+ ```
168
+
169
+ Step 3: **Verify on-device accuracy**
170
+
171
+ To verify the accuracy of the model on-device, you can run on-device inference
172
+ on sample input data on the same cloud hosted device.
173
+ ```python
174
+ input_data = torch_model.sample_inputs()
175
+ inference_job = hub.submit_inference_job(
176
+ model=target_model,
177
+ device=device,
178
+ inputs=input_data,
179
+ )
180
+ on_device_output = inference_job.download_output_data()
181
+
182
+ ```
183
+ With the output of the model, you can compute like PSNR, relative errors or
184
+ spot check the output with expected output.
185
+
186
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
187
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
188
+
189
+
190
+
191
+
192
+ ## Deploying compiled model to Android
193
+
194
+
195
+ The models can be deployed using multiple runtimes:
196
+ - TensorFlow Lite (`.tflite` export): [This
197
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
198
+ guide to deploy the .tflite model in an Android application.
199
+
200
+
201
+ - QNN (`.so` export ): This [sample
202
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
203
+ provides instructions on how to use the `.so` shared library in an Android application.
204
+
205
+
206
+ ## View on Qualcomm® AI Hub
207
+ Get more details on Person-Foot-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/foot_track_net).
208
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
209
+
210
+
211
+ ## License
212
+ * The license for the original implementation of Person-Foot-Detection can be found [here](https://github.com/qcom-ai-hub/ai-hub-models-internal/blob/main/LICENSE).
213
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
214
+
215
+
216
+
217
+ ## References
218
+ * [None](None)
219
+ * [Source Model Implementation](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/foot_track_net/model.py)
220
+
221
+
222
+
223
+ ## Community
224
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
225
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
226
+
227
+