Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ tags:
|
|
17 |
|
18 |
Posenet performs pose estimation on human images.
|
19 |
|
20 |
-
This model is an implementation of Posenet-Mobilenet-Quantized found [here](
|
21 |
This repository provides scripts to run Posenet-Mobilenet-Quantized on Qualcomm® devices.
|
22 |
More details on model performance across various devices, can be found
|
23 |
[here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
|
@@ -32,15 +32,31 @@ More details on model performance across various devices, can be found
|
|
32 |
- Number of parameters: 3.31M
|
33 |
- Model size: 3.47 MB
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
|
38 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
-
| ---|---|---|---|---|---|---|---|
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.56 ms | 0 - 62 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite)
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.644 ms | 0 - 12 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so)
|
42 |
-
|
43 |
-
|
44 |
|
45 |
## Installation
|
46 |
|
@@ -95,16 +111,16 @@ device. This script does the following:
|
|
95 |
```bash
|
96 |
python -m qai_hub_models.models.posenet_mobilenet_quantized.export
|
97 |
```
|
98 |
-
|
99 |
```
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
```
|
109 |
|
110 |
|
@@ -143,15 +159,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
143 |
Get more details on Posenet-Mobilenet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
|
144 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
145 |
|
|
|
146 |
## License
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
## References
|
152 |
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
|
153 |
* [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
|
154 |
|
|
|
|
|
155 |
## Community
|
156 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
157 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
|
|
17 |
|
18 |
Posenet performs pose estimation on human images.
|
19 |
|
20 |
+
This model is an implementation of Posenet-Mobilenet-Quantized found [here]({source_repo}).
|
21 |
This repository provides scripts to run Posenet-Mobilenet-Quantized on Qualcomm® devices.
|
22 |
More details on model performance across various devices, can be found
|
23 |
[here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
|
|
|
32 |
- Number of parameters: 3.31M
|
33 |
- Model size: 3.47 MB
|
34 |
|
35 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
+
|---|---|---|---|---|---|---|---|---|
|
37 |
+
| Posenet-Mobilenet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.558 ms | 0 - 2 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
38 |
+
| Posenet-Mobilenet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.64 ms | 0 - 11 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so) |
|
39 |
+
| Posenet-Mobilenet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.48 ms | 0 - 47 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
40 |
+
| Posenet-Mobilenet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.445 ms | 0 - 18 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so) |
|
41 |
+
| Posenet-Mobilenet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 2.182 ms | 0 - 27 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
42 |
+
| Posenet-Mobilenet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 2.902 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
|
43 |
+
| Posenet-Mobilenet-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 12.597 ms | 0 - 12 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
44 |
+
| Posenet-Mobilenet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.551 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
45 |
+
| Posenet-Mobilenet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.555 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
46 |
+
| Posenet-Mobilenet-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.56 ms | 0 - 106 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
47 |
+
| Posenet-Mobilenet-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.561 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
48 |
+
| Posenet-Mobilenet-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.557 ms | 0 - 17 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
49 |
+
| Posenet-Mobilenet-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.56 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
50 |
+
| Posenet-Mobilenet-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.559 ms | 0 - 3 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
51 |
+
| Posenet-Mobilenet-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.561 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
52 |
+
| Posenet-Mobilenet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.714 ms | 0 - 50 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
53 |
+
| Posenet-Mobilenet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.794 ms | 0 - 22 MB | INT8 | NPU | Use Export Script |
|
54 |
+
| Posenet-Mobilenet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.412 ms | 0 - 26 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
|
55 |
+
| Posenet-Mobilenet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.484 ms | 0 - 17 MB | INT8 | NPU | Use Export Script |
|
56 |
+
| Posenet-Mobilenet-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.679 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
57 |
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
## Installation
|
62 |
|
|
|
111 |
```bash
|
112 |
python -m qai_hub_models.models.posenet_mobilenet_quantized.export
|
113 |
```
|
|
|
114 |
```
|
115 |
+
Profiling Results
|
116 |
+
------------------------------------------------------------
|
117 |
+
Posenet-Mobilenet-Quantized
|
118 |
+
Device : Samsung Galaxy S23 (13)
|
119 |
+
Runtime : TFLITE
|
120 |
+
Estimated inference time (ms) : 0.6
|
121 |
+
Estimated peak memory usage (MB): [0, 2]
|
122 |
+
Total # Ops : 48
|
123 |
+
Compute Unit(s) : NPU (48 ops)
|
124 |
```
|
125 |
|
126 |
|
|
|
159 |
Get more details on Posenet-Mobilenet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
|
160 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
161 |
|
162 |
+
|
163 |
## License
|
164 |
+
* The license for the original implementation of Posenet-Mobilenet-Quantized can be found [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
|
165 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
166 |
+
|
167 |
+
|
168 |
|
169 |
## References
|
170 |
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
|
171 |
* [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
|
172 |
|
173 |
+
|
174 |
+
|
175 |
## Community
|
176 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
177 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|