qaihm-bot commited on
Commit
fc534eb
1 Parent(s): e786e0d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +12 -6
README.md CHANGED
@@ -30,10 +30,13 @@ More details on model performance across various devices, can be found
30
  - Model size: 4.66 MB
31
 
32
 
 
 
33
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
  | ---|---|---|---|---|---|---|---|
35
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 7.495 ms | 15 - 17 MB | FP16 | NPU | [Real-ESRGAN-General-x4v3.tflite](https://huggingface.co/qualcomm/Real-ESRGAN-General-x4v3/blob/main/Real-ESRGAN-General-x4v3.tflite)
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 6.301 ms | 0 - 108 MB | FP16 | NPU | [Real-ESRGAN-General-x4v3.so](https://huggingface.co/qualcomm/Real-ESRGAN-General-x4v3/blob/main/Real-ESRGAN-General-x4v3.so)
 
37
 
38
 
39
  ## Installation
@@ -95,15 +98,17 @@ python -m qai_hub_models.models.real_esrgan_general_x4v3.export
95
  Profile Job summary of Real-ESRGAN-General-x4v3
96
  --------------------------------------------------
97
  Device: Snapdragon X Elite CRD (11)
98
- Estimated Inference Time: 9.19 ms
99
- Estimated Peak Memory Range: 0.22-0.22 MB
100
  Compute Units: NPU (72) | Total (72)
101
 
102
 
103
  ```
 
 
104
  ## How does this work?
105
 
106
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Real-ESRGAN-General-x4v3/export.py)
107
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
108
  on-device. Lets go through each step below in detail:
109
 
@@ -180,6 +185,7 @@ spot check the output with expected output.
180
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
181
 
182
 
 
183
  ## Run demo on a cloud-hosted device
184
 
185
  You can also run the demo on-device.
@@ -216,7 +222,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
216
  ## License
217
  - The license for the original implementation of Real-ESRGAN-General-x4v3 can be found
218
  [here](https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE).
219
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
220
 
221
  ## References
222
  * [Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data](https://arxiv.org/abs/2107.10833)
 
30
  - Model size: 4.66 MB
31
 
32
 
33
+
34
+
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 7.261 ms | 17 - 24 MB | FP16 | NPU | [Real-ESRGAN-General-x4v3.tflite](https://huggingface.co/qualcomm/Real-ESRGAN-General-x4v3/blob/main/Real-ESRGAN-General-x4v3.tflite)
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 6.295 ms | 0 - 5 MB | FP16 | NPU | [Real-ESRGAN-General-x4v3.so](https://huggingface.co/qualcomm/Real-ESRGAN-General-x4v3/blob/main/Real-ESRGAN-General-x4v3.so)
39
+
40
 
41
 
42
  ## Installation
 
98
  Profile Job summary of Real-ESRGAN-General-x4v3
99
  --------------------------------------------------
100
  Device: Snapdragon X Elite CRD (11)
101
+ Estimated Inference Time: 8.67 ms
102
+ Estimated Peak Memory Range: 0.20-0.20 MB
103
  Compute Units: NPU (72) | Total (72)
104
 
105
 
106
  ```
107
+
108
+
109
  ## How does this work?
110
 
111
+ This [export script](https://aihub.qualcomm.com/models/real_esrgan_general_x4v3/qai_hub_models/models/Real-ESRGAN-General-x4v3/export.py)
112
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
113
  on-device. Lets go through each step below in detail:
114
 
 
185
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
186
 
187
 
188
+
189
  ## Run demo on a cloud-hosted device
190
 
191
  You can also run the demo on-device.
 
222
  ## License
223
  - The license for the original implementation of Real-ESRGAN-General-x4v3 can be found
224
  [here](https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE).
225
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
226
 
227
  ## References
228
  * [Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data](https://arxiv.org/abs/2107.10833)