qaihm-bot commited on
Commit
7418383
1 Parent(s): d5c0529

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - imagenet-1k
4
+ - imagenet-22k
5
+ library_name: pytorch
6
+ license: bsd-3-clause
7
+ pipeline_tag: image-classification
8
+ tags:
9
+ - backbone
10
+ - quantized
11
+ - android
12
+
13
+ ---
14
+
15
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/resnet50_quantized/web-assets/model_demo.png)
16
+
17
+ # ResNet50Quantized: Optimized for Mobile Deployment
18
+ ## Imagenet classifier and general purpose backbone
19
+
20
+ ResNet50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
21
+
22
+ This model is an implementation of ResNet50Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).
23
+ This repository provides scripts to run ResNet50Quantized on Qualcomm® devices.
24
+ More details on model performance across various devices, can be found
25
+ [here](https://aihub.qualcomm.com/models/resnet50_quantized).
26
+
27
+
28
+ ### Model Details
29
+
30
+ - **Model Type:** Image classification
31
+ - **Model Stats:**
32
+ - Model checkpoint: Imagenet
33
+ - Input resolution: 224x224
34
+ - Number of parameters: 25.5M
35
+ - Model size: 25.1 MB
36
+
37
+
38
+
39
+
40
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
41
+ | ---|---|---|---|---|---|---|---|
42
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.814 ms | 0 - 2 MB | INT8 | NPU | [ResNet50Quantized.tflite](https://huggingface.co/qualcomm/ResNet50Quantized/blob/main/ResNet50Quantized.tflite)
43
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.997 ms | 0 - 7 MB | INT8 | NPU | [ResNet50Quantized.so](https://huggingface.co/qualcomm/ResNet50Quantized/blob/main/ResNet50Quantized.so)
44
+
45
+
46
+
47
+ ## Installation
48
+
49
+ This model can be installed as a Python package via pip.
50
+
51
+ ```bash
52
+ pip install "qai-hub-models[resnet50_quantized]"
53
+ ```
54
+
55
+
56
+
57
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
58
+
59
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
60
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
61
+
62
+ With this API token, you can configure your client to run models on the cloud
63
+ hosted devices.
64
+ ```bash
65
+ qai-hub configure --api_token API_TOKEN
66
+ ```
67
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
68
+
69
+
70
+
71
+ ## Demo off target
72
+
73
+ The package contains a simple end-to-end demo that downloads pre-trained
74
+ weights and runs this model on a sample input.
75
+
76
+ ```bash
77
+ python -m qai_hub_models.models.resnet50_quantized.demo
78
+ ```
79
+
80
+ The above demo runs a reference implementation of pre-processing, model
81
+ inference, and post processing.
82
+
83
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
84
+ environment, please add the following to your cell (instead of the above).
85
+ ```
86
+ %run -m qai_hub_models.models.resnet50_quantized.demo
87
+ ```
88
+
89
+
90
+ ### Run model on a cloud-hosted device
91
+
92
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
93
+ device. This script does the following:
94
+ * Performance check on-device on a cloud-hosted device
95
+ * Downloads compiled assets that can be deployed on-device for Android.
96
+ * Accuracy check between PyTorch and on-device outputs.
97
+
98
+ ```bash
99
+ python -m qai_hub_models.models.resnet50_quantized.export
100
+ ```
101
+
102
+ ```
103
+ Profile Job summary of ResNet50Quantized
104
+ --------------------------------------------------
105
+ Device: Snapdragon X Elite CRD (11)
106
+ Estimated Inference Time: 0.99 ms
107
+ Estimated Peak Memory Range: 0.53-0.53 MB
108
+ Compute Units: NPU (78) | Total (78)
109
+
110
+
111
+ ```
112
+
113
+
114
+
115
+
116
+ ## Run demo on a cloud-hosted device
117
+
118
+ You can also run the demo on-device.
119
+
120
+ ```bash
121
+ python -m qai_hub_models.models.resnet50_quantized.demo --on-device
122
+ ```
123
+
124
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
125
+ environment, please add the following to your cell (instead of the above).
126
+ ```
127
+ %run -m qai_hub_models.models.resnet50_quantized.demo -- --on-device
128
+ ```
129
+
130
+
131
+ ## Deploying compiled model to Android
132
+
133
+
134
+ The models can be deployed using multiple runtimes:
135
+ - TensorFlow Lite (`.tflite` export): [This
136
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
137
+ guide to deploy the .tflite model in an Android application.
138
+
139
+
140
+ - QNN (`.so` export ): This [sample
141
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
142
+ provides instructions on how to use the `.so` shared library in an Android application.
143
+
144
+
145
+ ## View on Qualcomm® AI Hub
146
+ Get more details on ResNet50Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/resnet50_quantized).
147
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
148
+
149
+ ## License
150
+ - The license for the original implementation of ResNet50Quantized can be found
151
+ [here](https://github.com/pytorch/vision/blob/main/LICENSE).
152
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
153
+
154
+ ## References
155
+ * [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
156
+ * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
157
+
158
+ ## Community
159
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
160
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
161
+
162
+