qaihm-bot commited on
Commit
3f424ce
1 Parent(s): 1e466d9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -36,7 +36,7 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 135.762 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
40
 
41
 
42
  ## Installation
@@ -96,9 +96,9 @@ python -m qai_hub_models.models.vit.export
96
  ```
97
  Profile Job summary of VIT
98
  --------------------------------------------------
99
- Device: Samsung Galaxy S23 Ultra (13)
100
- Estimated Inference Time: 135.76 ms
101
- Estimated Peak Memory Range: 0.14-3.18 MB
102
  Compute Units: NPU (557) | Total (557)
103
 
104
 
@@ -218,7 +218,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
218
  ## License
219
  - The license for the original implementation of VIT can be found
220
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
221
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
222
 
223
  ## References
224
  * [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 136.11 ms | 0 - 4 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
40
 
41
 
42
  ## Installation
 
96
  ```
97
  Profile Job summary of VIT
98
  --------------------------------------------------
99
+ Device: Samsung Galaxy S24 (14)
100
+ Estimated Inference Time: 100.29 ms
101
+ Estimated Peak Memory Range: 0.16-382.58 MB
102
  Compute Units: NPU (557) | Total (557)
103
 
104
 
 
218
  ## License
219
  - The license for the original implementation of VIT can be found
220
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
221
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
222
 
223
  ## References
224
  * [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)