Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,7 +36,7 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -96,9 +96,9 @@ python -m qai_hub_models.models.vit.export
|
|
96 |
```
|
97 |
Profile Job summary of VIT
|
98 |
--------------------------------------------------
|
99 |
-
Device: Samsung Galaxy
|
100 |
-
Estimated Inference Time:
|
101 |
-
Estimated Peak Memory Range: 0.
|
102 |
Compute Units: NPU (557) | Total (557)
|
103 |
|
104 |
|
@@ -218,7 +218,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
218 |
## License
|
219 |
- The license for the original implementation of VIT can be found
|
220 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
221 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
222 |
|
223 |
## References
|
224 |
* [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
|
|
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 136.11 ms | 0 - 4 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
96 |
```
|
97 |
Profile Job summary of VIT
|
98 |
--------------------------------------------------
|
99 |
+
Device: Samsung Galaxy S24 (14)
|
100 |
+
Estimated Inference Time: 100.29 ms
|
101 |
+
Estimated Peak Memory Range: 0.16-382.58 MB
|
102 |
Compute Units: NPU (557) | Total (557)
|
103 |
|
104 |
|
|
|
218 |
## License
|
219 |
- The license for the original implementation of VIT can be found
|
220 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
221 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
222 |
|
223 |
## References
|
224 |
* [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
|