Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -93,9 +93,9 @@ python -m qai_hub_models.models.xlsr_quantized.export
|
|
93 |
```
|
94 |
Profile Job summary of XLSR-Quantized
|
95 |
--------------------------------------------------
|
96 |
-
Device: Samsung Galaxy
|
97 |
-
Estimated Inference Time: 1.
|
98 |
-
Estimated Peak Memory Range: 0.02-
|
99 |
Compute Units: NPU (16),CPU (3) | Total (19)
|
100 |
|
101 |
|
@@ -201,7 +201,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
201 |
## License
|
202 |
- The license for the original implementation of XLSR-Quantized can be found
|
203 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
204 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
205 |
|
206 |
## References
|
207 |
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
|
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.349 ms | 0 - 2 MB | INT8 | NPU | [XLSR-Quantized.tflite](https://huggingface.co/qualcomm/XLSR-Quantized/blob/main/XLSR-Quantized.tflite)
|
37 |
|
38 |
|
39 |
## Installation
|
|
|
93 |
```
|
94 |
Profile Job summary of XLSR-Quantized
|
95 |
--------------------------------------------------
|
96 |
+
Device: Samsung Galaxy S24 (14)
|
97 |
+
Estimated Inference Time: 1.08 ms
|
98 |
+
Estimated Peak Memory Range: 0.02-20.04 MB
|
99 |
Compute Units: NPU (16),CPU (3) | Total (19)
|
100 |
|
101 |
|
|
|
201 |
## License
|
202 |
- The license for the original implementation of XLSR-Quantized can be found
|
203 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
204 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
205 |
|
206 |
## References
|
207 |
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
|