qaihm-bot commited on
Commit
6f53e2f
·
verified ·
1 Parent(s): a669a95

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.298 ms | 0 - 1 MB | FP16 | NPU | [XLSR-Quantized.tflite](https://huggingface.co/qualcomm/XLSR-Quantized/blob/main/XLSR-Quantized.tflite)
37
 
38
 
39
  ## Installation
@@ -93,9 +93,9 @@ python -m qai_hub_models.models.xlsr_quantized.export
93
  ```
94
  Profile Job summary of XLSR-Quantized
95
  --------------------------------------------------
96
- Device: Samsung Galaxy S23 Ultra (13)
97
- Estimated Inference Time: 1.30 ms
98
- Estimated Peak Memory Range: 0.02-1.36 MB
99
  Compute Units: NPU (16),CPU (3) | Total (19)
100
 
101
 
@@ -201,7 +201,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
201
  ## License
202
  - The license for the original implementation of XLSR-Quantized can be found
203
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
204
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
205
 
206
  ## References
207
  * [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.349 ms | 0 - 2 MB | INT8 | NPU | [XLSR-Quantized.tflite](https://huggingface.co/qualcomm/XLSR-Quantized/blob/main/XLSR-Quantized.tflite)
37
 
38
 
39
  ## Installation
 
93
  ```
94
  Profile Job summary of XLSR-Quantized
95
  --------------------------------------------------
96
+ Device: Samsung Galaxy S24 (14)
97
+ Estimated Inference Time: 1.08 ms
98
+ Estimated Peak Memory Range: 0.02-20.04 MB
99
  Compute Units: NPU (16),CPU (3) | Total (19)
100
 
101
 
 
201
  ## License
202
  - The license for the original implementation of XLSR-Quantized can be found
203
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
204
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
205
 
206
  ## References
207
  * [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)