File size: 5,258 Bytes
dc1bcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bcf71
 
dc1bcb4
 
4b2b2b4
c6bcf71
dc1bcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bcf71
 
5d06d38
4b2b2b4
 
657a3e6
dc1bcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b2b2b4
 
dc1bcb4
 
 
 
 
 
0126cf4
dc1bcb4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
datasets:
- COCO
library_name: pytorch
license: apache-2.0
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolonas_quantized/web-assets/model_demo.png)

# Yolo-NAS-Quantized: Optimized for Mobile Deployment
## Quantized real-time object detection optimized for mobile and edge

YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.

This model is an implementation of Yolo-NAS-Quantized found [here](https://github.com/Deci-AI/super-gradients).
This repository provides scripts to run Yolo-NAS-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolonas_quantized).


### Model Details

- **Model Type:** Object detection
- **Model Stats:**
  - Model checkpoint: YoloNAS Small
  - Input resolution: 640x640
  - Number of parameters: 12.2M
  - Model size: 12.1 MB




| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
| ---|---|---|---|---|---|---|---|
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.77 ms | 0 - 193 MB | INT8 | NPU |  [Yolo-NAS-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-NAS-Quantized/blob/main/Yolo-NAS-Quantized.tflite) 



## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[yolonas_quantized]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.yolonas_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolonas_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.yolonas_quantized.export
```

```
Profile Job summary of Yolo-NAS-Quantized
--------------------------------------------------
Device: RB3 Gen 2 (Proxy) (12)
Estimated Inference Time: 13.74 ms
Estimated Peak Memory Range: 0.09-66.41 MB
Compute Units: NPU (203),CPU (1) | Total (204)


```




## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.yolonas_quantized.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolonas_quantized.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Yolo-NAS-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/yolonas_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)

## License
- The license for the original implementation of Yolo-NAS-Quantized can be found
  [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md).
- The license for the compiled assets for on-device deployment can be found [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md)

## References
* [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
* [Source Model Implementation](https://github.com/Deci-AI/super-gradients)

## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).