Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -34,9 +34,12 @@ More details on model performance across various devices, can be found
|
|
34 |
- Model size: 12.1 MB
|
35 |
|
36 |
|
|
|
|
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.
|
|
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -94,83 +97,18 @@ device. This script does the following:
|
|
94 |
python -m qai_hub_models.models.yolonas_quantized.export
|
95 |
```
|
96 |
|
97 |
-
## How does this work?
|
98 |
-
|
99 |
-
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-NAS-Quantized/export.py)
|
100 |
-
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
101 |
-
on-device. Lets go through each step below in detail:
|
102 |
-
|
103 |
-
Step 1: **Compile model for on-device deployment**
|
104 |
-
|
105 |
-
To compile a PyTorch model for on-device deployment, we first trace the model
|
106 |
-
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
107 |
-
|
108 |
-
```python
|
109 |
-
import torch
|
110 |
-
|
111 |
-
import qai_hub as hub
|
112 |
-
from qai_hub_models.models.yolonas_quantized import Model
|
113 |
-
|
114 |
-
# Load the model
|
115 |
-
torch_model = Model.from_pretrained()
|
116 |
-
torch_model.eval()
|
117 |
-
|
118 |
-
# Device
|
119 |
-
device = hub.Device("Samsung Galaxy S23")
|
120 |
-
|
121 |
-
# Trace model
|
122 |
-
input_shape = torch_model.get_input_spec()
|
123 |
-
sample_inputs = torch_model.sample_inputs()
|
124 |
-
|
125 |
-
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
126 |
-
|
127 |
-
# Compile model on a specific device
|
128 |
-
compile_job = hub.submit_compile_job(
|
129 |
-
model=pt_model,
|
130 |
-
device=device,
|
131 |
-
input_specs=torch_model.get_input_spec(),
|
132 |
-
)
|
133 |
-
|
134 |
-
# Get target model to run on-device
|
135 |
-
target_model = compile_job.get_target_model()
|
136 |
-
|
137 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
|
140 |
-
Step 2: **Performance profiling on cloud-hosted device**
|
141 |
-
|
142 |
-
After compiling models from step 1. Models can be profiled model on-device using the
|
143 |
-
`target_model`. Note that this scripts runs the model on a device automatically
|
144 |
-
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
145 |
-
provided job URL to view a variety of on-device performance metrics.
|
146 |
-
```python
|
147 |
-
profile_job = hub.submit_profile_job(
|
148 |
-
model=target_model,
|
149 |
-
device=device,
|
150 |
-
)
|
151 |
-
|
152 |
```
|
153 |
|
154 |
-
Step 3: **Verify on-device accuracy**
|
155 |
-
|
156 |
-
To verify the accuracy of the model on-device, you can run on-device inference
|
157 |
-
on sample input data on the same cloud hosted device.
|
158 |
-
```python
|
159 |
-
input_data = torch_model.sample_inputs()
|
160 |
-
inference_job = hub.submit_inference_job(
|
161 |
-
model=target_model,
|
162 |
-
device=device,
|
163 |
-
inputs=input_data,
|
164 |
-
)
|
165 |
-
|
166 |
-
on_device_output = inference_job.download_output_data()
|
167 |
-
|
168 |
-
```
|
169 |
-
With the output of the model, you can compute like PSNR, relative errors or
|
170 |
-
spot check the output with expected output.
|
171 |
|
172 |
-
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
173 |
-
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
174 |
|
175 |
|
176 |
## Run demo on a cloud-hosted device
|
@@ -209,7 +147,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
209 |
## License
|
210 |
- The license for the original implementation of Yolo-NAS-Quantized can be found
|
211 |
[here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md).
|
212 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
213 |
|
214 |
## References
|
215 |
* [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
|
|
|
34 |
- Model size: 12.1 MB
|
35 |
|
36 |
|
37 |
+
|
38 |
+
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.973 ms | 10 - 13 MB | INT8 | NPU | [Yolo-NAS-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-NAS-Quantized/blob/main/Yolo-NAS-Quantized.tflite)
|
42 |
+
|
43 |
|
44 |
|
45 |
## Installation
|
|
|
97 |
python -m qai_hub_models.models.yolonas_quantized.export
|
98 |
```
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
```
|
101 |
+
Profile Job summary of Yolo-NAS-Quantized
|
102 |
+
--------------------------------------------------
|
103 |
+
Device: RB5 (Proxy) (12)
|
104 |
+
Estimated Inference Time: 131.37 ms
|
105 |
+
Estimated Peak Memory Range: 14.60-23.46 MB
|
106 |
+
Compute Units: CPU (203) | Total (203)
|
107 |
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
```
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
112 |
|
113 |
|
114 |
## Run demo on a cloud-hosted device
|
|
|
147 |
## License
|
148 |
- The license for the original implementation of Yolo-NAS-Quantized can be found
|
149 |
[here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md).
|
150 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
151 |
|
152 |
## References
|
153 |
* [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
|