qaihm-bot commited on
Commit
59b4459
1 Parent(s): 684992e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2 -13
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
  # Yolo-v7-Quantized: Optimized for Mobile Deployment
15
  ## Quantized real-time object detection optimized for mobile and edge
16
 
17
- YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the [COCO dataset](https://cocodataset.org/#home).
18
 
19
  This model is an implementation of Yolo-v7-Quantized found [here](https://github.com/WongKinYiu/yolov7/).
20
  This repository provides scripts to run Yolo-v7-Quantized on Qualcomm® devices.
@@ -34,8 +34,7 @@ More details on model performance across various devices, can be found
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.122 ms | 0 - 13 MB | INT8 | NPU | [Yolo-v7-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-v7-Quantized/blob/main/Yolo-v7-Quantized.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.732 ms | 0 - 12 MB | INT8 | NPU | [Yolo-v7-Quantized.so](https://huggingface.co/qualcomm/Yolo-v7-Quantized/blob/main/Yolo-v7-Quantized.so)
39
 
40
 
41
  ## Installation
@@ -93,16 +92,6 @@ device. This script does the following:
93
  python -m qai_hub_models.models.yolov7_quantized.export
94
  ```
95
 
96
- ```
97
- Profile Job summary of Yolo-v7-Quantized
98
- --------------------------------------------------
99
- Device: QCS8550 (Proxy) (12)
100
- Estimated Inference Time: 5.98 ms
101
- Estimated Peak Memory Range: 4.71-14.69 MB
102
- Compute Units: NPU (220) | Total (220)
103
-
104
-
105
- ```
106
  ## How does this work?
107
 
108
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v7-Quantized/export.py)
 
14
  # Yolo-v7-Quantized: Optimized for Mobile Deployment
15
  ## Quantized real-time object detection optimized for mobile and edge
16
 
17
+ YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
18
 
19
  This model is an implementation of Yolo-v7-Quantized found [here](https://github.com/WongKinYiu/yolov7/).
20
  This repository provides scripts to run Yolo-v7-Quantized on Qualcomm® devices.
 
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.575 ms | 0 - 2 MB | INT8 | NPU | [Yolo-v7-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-v7-Quantized/blob/main/Yolo-v7-Quantized.tflite)
 
38
 
39
 
40
  ## Installation
 
92
  python -m qai_hub_models.models.yolov7_quantized.export
93
  ```
94
 
 
 
 
 
 
 
 
 
 
 
95
  ## How does this work?
96
 
97
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v7-Quantized/export.py)