Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
# Yolo-v7-Quantized: Optimized for Mobile Deployment
|
15 |
## Quantized real-time object detection optimized for mobile and edge
|
16 |
|
17 |
-
YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the
|
18 |
|
19 |
This model is an implementation of Yolo-v7-Quantized found [here](https://github.com/WongKinYiu/yolov7/).
|
20 |
This repository provides scripts to run Yolo-v7-Quantized on Qualcomm® devices.
|
@@ -34,8 +34,7 @@ More details on model performance across various devices, can be found
|
|
34 |
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.732 ms | 0 - 12 MB | INT8 | NPU | [Yolo-v7-Quantized.so](https://huggingface.co/qualcomm/Yolo-v7-Quantized/blob/main/Yolo-v7-Quantized.so)
|
39 |
|
40 |
|
41 |
## Installation
|
@@ -93,16 +92,6 @@ device. This script does the following:
|
|
93 |
python -m qai_hub_models.models.yolov7_quantized.export
|
94 |
```
|
95 |
|
96 |
-
```
|
97 |
-
Profile Job summary of Yolo-v7-Quantized
|
98 |
-
--------------------------------------------------
|
99 |
-
Device: QCS8550 (Proxy) (12)
|
100 |
-
Estimated Inference Time: 5.98 ms
|
101 |
-
Estimated Peak Memory Range: 4.71-14.69 MB
|
102 |
-
Compute Units: NPU (220) | Total (220)
|
103 |
-
|
104 |
-
|
105 |
-
```
|
106 |
## How does this work?
|
107 |
|
108 |
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v7-Quantized/export.py)
|
|
|
14 |
# Yolo-v7-Quantized: Optimized for Mobile Deployment
|
15 |
## Quantized real-time object detection optimized for mobile and edge
|
16 |
|
17 |
+
YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
|
18 |
|
19 |
This model is an implementation of Yolo-v7-Quantized found [here](https://github.com/WongKinYiu/yolov7/).
|
20 |
This repository provides scripts to run Yolo-v7-Quantized on Qualcomm® devices.
|
|
|
34 |
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.575 ms | 0 - 2 MB | INT8 | NPU | [Yolo-v7-Quantized.tflite](https://huggingface.co/qualcomm/Yolo-v7-Quantized/blob/main/Yolo-v7-Quantized.tflite)
|
|
|
38 |
|
39 |
|
40 |
## Installation
|
|
|
92 |
python -m qai_hub_models.models.yolov7_quantized.export
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
## How does this work?
|
96 |
|
97 |
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v7-Quantized/export.py)
|