File size: 1,458 Bytes
01c57c8
 
 
 
f28298b
01c57c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f28298b
01c57c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
tags: autotrain
language: en
widget:
- text: "I love driving this car"
datasets:
- qualitydatalab/autotrain-data-car-review-project
co2_eq_emissions: 0.21529888368377176
---

# Model Trained Using AutoTrain

- Problem type: Multi-class Classification
- Model ID: 966432121
- CO2 Emissions (in grams): 0.21529888368377176

## Validation Metrics

- Loss: 0.6013365983963013
- Accuracy: 0.737791286727457
- Macro F1: 0.729171012281939
- Micro F1: 0.737791286727457
- Weighted F1: 0.729171012281939
- Macro Precision: 0.7313770127538427
- Micro Precision: 0.737791286727457
- Weighted Precision: 0.7313770127538428
- Macro Recall: 0.737791286727457
- Micro Recall: 0.737791286727457
- Weighted Recall: 0.737791286727457


## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love driving this car"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432121
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```