File size: 5,135 Bytes
136f4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: transformers
base_model: Fsoft-AIC/videberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: videberta-large-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videberta-large-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov

This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0976
- Accuracy: 0.9816
- F1: 0.0
- Precision: 0.0
- Recall: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1  | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:---------:|:------:|
| No log        | 1.0   | 250   | 0.0903          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.1532        | 2.0   | 500   | 0.0942          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.1532        | 3.0   | 750   | 0.0947          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0772        | 4.0   | 1000  | 0.0956          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0772        | 5.0   | 1250  | 0.0964          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0769        | 6.0   | 1500  | 0.0952          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0769        | 7.0   | 1750  | 0.0988          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0766        | 8.0   | 2000  | 0.0983          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0766        | 9.0   | 2250  | 0.0971          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0769        | 10.0  | 2500  | 0.0984          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0769        | 11.0  | 2750  | 0.1002          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0768        | 12.0  | 3000  | 0.0989          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0768        | 13.0  | 3250  | 0.0994          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0766        | 14.0  | 3500  | 0.0994          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0766        | 15.0  | 3750  | 0.0994          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0763        | 16.0  | 4000  | 0.0991          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0763        | 17.0  | 4250  | 0.1011          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0766        | 18.0  | 4500  | 0.0995          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0766        | 19.0  | 4750  | 0.1003          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0761        | 20.0  | 5000  | 0.0996          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0761        | 21.0  | 5250  | 0.1004          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0757        | 22.0  | 5500  | 0.1002          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0757        | 23.0  | 5750  | 0.0993          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0749        | 24.0  | 6000  | 0.0981          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0749        | 25.0  | 6250  | 0.0986          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0739        | 26.0  | 6500  | 0.0991          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0739        | 27.0  | 6750  | 0.0983          | 0.9825   | 0.0 | 0.0       | 0.0    |
| 0.0723        | 28.0  | 7000  | 0.0985          | 0.9808   | 0.0 | 0.0       | 0.0    |
| 0.0723        | 29.0  | 7250  | 0.1009          | 0.9800   | 0.0 | 0.0       | 0.0    |
| 0.0713        | 30.0  | 7500  | 0.0995          | 0.9812   | 0.0 | 0.0       | 0.0    |
| 0.0713        | 31.0  | 7750  | 0.0983          | 0.9816   | 0.0 | 0.0       | 0.0    |
| 0.0699        | 32.0  | 8000  | 0.0969          | 0.9820   | 0.0 | 0.0       | 0.0    |
| 0.0699        | 33.0  | 8250  | 0.0982          | 0.9816   | 0.0 | 0.0       | 0.0    |
| 0.0691        | 34.0  | 8500  | 0.0973          | 0.9816   | 0.0 | 0.0       | 0.0    |
| 0.0691        | 35.0  | 8750  | 0.0984          | 0.9812   | 0.0 | 0.0       | 0.0    |
| 0.0684        | 36.0  | 9000  | 0.0977          | 0.9816   | 0.0 | 0.0       | 0.0    |
| 0.0684        | 37.0  | 9250  | 0.0978          | 0.9816   | 0.0 | 0.0       | 0.0    |
| 0.0676        | 38.0  | 9500  | 0.0972          | 0.9820   | 0.0 | 0.0       | 0.0    |
| 0.0676        | 39.0  | 9750  | 0.0977          | 0.9816   | 0.0 | 0.0       | 0.0    |
| 0.0671        | 40.0  | 10000 | 0.0976          | 0.9816   | 0.0 | 0.0       | 0.0    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1