File size: 5,135 Bytes
136f4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
library_name: transformers
base_model: Fsoft-AIC/videberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: videberta-large-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videberta-large-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0976
- Accuracy: 0.9816
- F1: 0.0
- Precision: 0.0
- Recall: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:---------:|:------:|
| No log | 1.0 | 250 | 0.0903 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.1532 | 2.0 | 500 | 0.0942 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.1532 | 3.0 | 750 | 0.0947 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0772 | 4.0 | 1000 | 0.0956 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0772 | 5.0 | 1250 | 0.0964 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0769 | 6.0 | 1500 | 0.0952 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0769 | 7.0 | 1750 | 0.0988 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0766 | 8.0 | 2000 | 0.0983 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0766 | 9.0 | 2250 | 0.0971 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0769 | 10.0 | 2500 | 0.0984 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0769 | 11.0 | 2750 | 0.1002 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0768 | 12.0 | 3000 | 0.0989 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0768 | 13.0 | 3250 | 0.0994 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0766 | 14.0 | 3500 | 0.0994 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0766 | 15.0 | 3750 | 0.0994 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0763 | 16.0 | 4000 | 0.0991 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0763 | 17.0 | 4250 | 0.1011 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0766 | 18.0 | 4500 | 0.0995 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0766 | 19.0 | 4750 | 0.1003 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0761 | 20.0 | 5000 | 0.0996 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0761 | 21.0 | 5250 | 0.1004 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0757 | 22.0 | 5500 | 0.1002 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0757 | 23.0 | 5750 | 0.0993 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0749 | 24.0 | 6000 | 0.0981 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0749 | 25.0 | 6250 | 0.0986 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0739 | 26.0 | 6500 | 0.0991 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0739 | 27.0 | 6750 | 0.0983 | 0.9825 | 0.0 | 0.0 | 0.0 |
| 0.0723 | 28.0 | 7000 | 0.0985 | 0.9808 | 0.0 | 0.0 | 0.0 |
| 0.0723 | 29.0 | 7250 | 0.1009 | 0.9800 | 0.0 | 0.0 | 0.0 |
| 0.0713 | 30.0 | 7500 | 0.0995 | 0.9812 | 0.0 | 0.0 | 0.0 |
| 0.0713 | 31.0 | 7750 | 0.0983 | 0.9816 | 0.0 | 0.0 | 0.0 |
| 0.0699 | 32.0 | 8000 | 0.0969 | 0.9820 | 0.0 | 0.0 | 0.0 |
| 0.0699 | 33.0 | 8250 | 0.0982 | 0.9816 | 0.0 | 0.0 | 0.0 |
| 0.0691 | 34.0 | 8500 | 0.0973 | 0.9816 | 0.0 | 0.0 | 0.0 |
| 0.0691 | 35.0 | 8750 | 0.0984 | 0.9812 | 0.0 | 0.0 | 0.0 |
| 0.0684 | 36.0 | 9000 | 0.0977 | 0.9816 | 0.0 | 0.0 | 0.0 |
| 0.0684 | 37.0 | 9250 | 0.0978 | 0.9816 | 0.0 | 0.0 | 0.0 |
| 0.0676 | 38.0 | 9500 | 0.0972 | 0.9820 | 0.0 | 0.0 | 0.0 |
| 0.0676 | 39.0 | 9750 | 0.0977 | 0.9816 | 0.0 | 0.0 | 0.0 |
| 0.0671 | 40.0 | 10000 | 0.0976 | 0.9816 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
|