File size: 3,668 Bytes
837bad6
d8143df
837bad6
 
 
 
 
d8143df
 
 
 
 
837bad6
 
 
 
 
 
 
d8143df
837bad6
 
 
 
 
 
 
 
 
d8143df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837bad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import argparse
import torch
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig

# Parse command-line arguments
parser = argparse.ArgumentParser(description="Load and use a quantized model")
parser.add_argument("-q", "--use_quant", action="store_true", help="Use quantized model")
args = parser.parse_args()

if torch.cuda.is_available():
    device = torch.device("cuda")
    print("GPU is available. Using CUDA.")
else:
    device = torch.device("cpu")
    print("GPU is not available. Using CPU.")

# Load the processor
local_path = "./model/Molmo-7B-D-0924"
processor = AutoProcessor.from_pretrained(
    local_path,
    local_files_only=True,
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

# Load the model
if args.use_quant:
    # Load the quantized model
    quantized_local_path = "./model/molmo-7B-D-bnb-4bit"
    model = AutoModelForCausalLM.from_pretrained(
        quantized_local_path,
        trust_remote_code=True,
        torch_dtype='auto',
        device_map='auto',
    )
else:
    # Load the non-quantized model
    model = AutoModelForCausalLM.from_pretrained(
        local_path,
        trust_remote_code=True,
        torch_dtype='auto',
        device_map='auto',
    )
    model.to(dtype=torch.bfloat16)

# directory containing the images
image_directory = "./images"

# iterate through the images in the directory
for filename in os.listdir(image_directory):
    if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png"):  # add more image extensions if needed
        image_path = os.path.join(image_directory, filename)
        image = Image.open(image_path)
        
        # process the image and text
        inputs = processor.process(
            images=[image],
            text="Describe what you see in vivid detail, without line breaks. Include information about the pose of characters, their facial expression, their height, body type, weight, the position of their limbs, and the direction of their gaze, the color of their eyes, hair, and skin. If you know a person or place name, provide it. If you know the name of an artist who may have created what you see, provide that. Do not provide opinions or value judgements. Limit your response to 276 words to avoid your description getting cut off.",
        )

        # move inputs to the correct device and make a batch of size 1
        inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
        inputs["images"] = inputs["images"].to(torch.bfloat16)

        # generate output; maximum 500 new tokens; stop generation when   is generated
        with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
            output = model.generate_from_batch(
                inputs,
                GenerationConfig(max_new_tokens=500, stop_strings="<|endoftext|>"),
                tokenizer=processor.tokenizer,
            )

        # only get generated tokens; decode them to text
        generated_tokens = output[0, inputs["input_ids"].size(1) :]
        generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)

        # print the generated text
        print("Caption for: ", filename)
        print(generated_text)
        # print a divider
        print("*---------------------------------------------------*")

        # save the generated text to a file
        output_filename = os.path.splitext(filename)[0] + ".txt"
        with open(os.path.join(image_directory,output_filename), "w") as file:
            file.write(generated_text)