File size: 8,484 Bytes
837bad6 f3ff182 837bad6 6c65cfa 837bad6 6c65cfa 837bad6 6c65cfa 837bad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# note: if you have a mix of Ampere and newer, and also older than Ampere GPUs, set the environment variable
# CUDA_VISIBLE_DEVICE=1,2,3 (for example) so that one or the other is excluded.
# otherwise the script may fail with a flash attention exception.
import gradio as gr
import os
import argparse
import uuid
import zipfile
import torch
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from io import BytesIO
import base64
import atexit
import shutil
def cleanup_temp_files():
# Delete the subdirectories inside the "images" directory
if os.path.exists("images"):
for dir_name in os.listdir("images"):
dir_path = os.path.join("images", dir_name)
if os.path.isdir(dir_path):
shutil.rmtree(dir_path)
# Parse command-line arguments
parser = argparse.ArgumentParser(description="Load and use a quantized model")
parser.add_argument("-q", "--use_quant", action="store_true", help="Use quantized model")
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available. Using CUDA.")
else:
device = torch.device("cpu")
print("GPU is not available. Using CPU.")
# Load the processor
local_path = "./model/Molmo-7B-D-0924"
processor = AutoProcessor.from_pretrained(
local_path,
local_files_only=True,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
# Load the model
if args.use_quant:
# Load the quantized model
quantized_local_path = "./model/molmo-7B-D-bnb-4bit"
model = AutoModelForCausalLM.from_pretrained(
quantized_local_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto',
)
else:
# Load the non-quantized model
model = AutoModelForCausalLM.from_pretrained(
local_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto',
)
model.to(dtype=torch.bfloat16)
def unzip_images(zip_file):
# Create a unique directory for extracted images inside the "images" directory
session_dir = os.path.join("images", str(uuid.uuid4()))
os.makedirs(session_dir, exist_ok=True)
# Extract images from the ZIP file to the session directory
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
for file_info in zip_ref.infolist():
if not file_info.is_dir() and not file_info.filename.startswith("__MACOSX") and not file_info.filename.startswith("."):
zip_ref.extract(file_info, session_dir)
# Get the list of image paths
image_paths = [os.path.join(session_dir, filename) for filename in os.listdir(session_dir) if filename.lower().endswith(('.jpg', '.jpeg', '.png'))]
# Read the image data as PIL Image objects for previews
image_data = []
for image_path in image_paths:
image = Image.open(image_path)
image.thumbnail((128, 128)) # Resize the image to a maximum size of 128x128 pixels
image_data.append(image)
# Return the list of image paths and resized image data for previews
return image_paths, image_data
def generate_caption(image_path, processor, model, generation_config, bits_and_bytes_config):
# generate a caption and return it
caption = f"Caption for {image_path}"
print("Processing ", image_path)
image = Image.open(image_path)
# process the image and text
inputs = processor.process(
images=[image],
text="Describe what you see in vivid detail, without line breaks. Include information about the pose of characters, their facial expression, their height, body type, weight, the position of their limbs, and the direction of their gaze, the color of their eyes, hair, and skin. If you know a person or place name, provide it. If you know the name of an artist who may have created what you see, provide that. Do not provide opinions or value judgements. Limit your response to 276 words to avoid your description getting cut off.",
)
# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
inputs["images"] = inputs["images"].to(torch.bfloat16)
# generate output; maximum 500 new tokens; stop generation when is generated
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=500, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer,
)
# only get generated tokens; decode them to text
generated_tokens = output[0, inputs["input_ids"].size(1) :]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# return the generated text
return generated_text
def process_images(image_paths, image_data):
captions = []
session_dir = os.path.dirname(image_paths[0])
for image_path in image_paths:
filename = os.path.basename(image_path) # Add this line to get the filename
if filename.lower().endswith(('.jpg', '.jpeg', '.png')):
# Process the image using the loaded model
# Use the loaded model to generate the caption
caption = generate_caption(image_path, processor, model, generation_config, bits_and_bytes_config)
captions.append(caption)
# Save the caption to a text file
with open(os.path.join(session_dir, f"{os.path.splitext(filename)[0]}.txt"), 'w') as f:
f.write(caption)
# Create a ZIP file containing the caption text files
zip_filename = f"{session_dir}.zip"
with zipfile.ZipFile(zip_filename, 'w') as zip_ref:
for filename in os.listdir(session_dir):
if filename.lower().endswith('.txt'):
zip_ref.write(os.path.join(session_dir, filename), filename)
# Delete the session directory and its contents
for filename in os.listdir(session_dir):
os.remove(os.path.join(session_dir, filename))
os.rmdir(session_dir)
return captions, zip_filename, image_paths
def format_captioned_image(image, caption):
buffered = BytesIO()
image.save(buffered, format="JPEG")
encoded_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"<img src='data:image/jpeg;base64,{encoded_image}' style='width: 128px; height: 128px; object-fit: cover; margin-right: 8px;' /><span>{caption}</span>"
def process_images_and_update_gallery(zip_file):
image_paths, image_data = unzip_images(zip_file)
captions, zip_filename, image_paths = process_images(image_paths, image_data)
image_captions = [format_captioned_image(img, caption) for img, caption in zip(image_data, captions)]
return gr.Markdown("\n".join(image_captions)), zip_filename
def main():
# Register the cleanup function to be called on program exit
atexit.register(cleanup_temp_files)
with gr.Blocks(css="""
.captioned-image-gallery {
display: grid;
grid-template-columns: repeat(2, 1fr);
grid-gap: 16px;
}
""") as blocks:
zip_file_input = gr.File(label="Upload ZIP file containing images")
image_gallery = gr.Markdown(label="Image Previews")
submit_button = gr.Button("Submit")
zip_download_button = gr.Button("Download Caption ZIP", visible=False)
zip_filename = gr.State("")
zip_file_input.upload(
lambda zip_file: "\n".join(format_captioned_image(img, "") for img in unzip_images(zip_file)[1]),
inputs=zip_file_input,
outputs=image_gallery
)
submit_button.click(
process_images_and_update_gallery,
inputs=[zip_file_input],
outputs=[image_gallery, zip_filename]
)
zip_filename.change(
lambda zip_filename: gr.update(visible=True),
inputs=zip_filename,
outputs=zip_download_button
)
zip_download_button.click(
lambda zip_filename: (gr.update(value=zip_filename), gr.update(visible=True), cleanup_temp_files()),
inputs=zip_filename,
outputs=[zip_file_input, zip_download_button]
)
blocks.launch(server_name='0.0.0.0')
if __name__ == "__main__":
main()
|