|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import os |
|
import argparse |
|
import uuid |
|
import zipfile |
|
import torch |
|
from PIL import Image |
|
import requests |
|
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig |
|
from io import BytesIO |
|
import base64 |
|
import atexit |
|
import shutil |
|
|
|
|
|
def cleanup_temp_files(): |
|
|
|
if os.path.exists("images"): |
|
for dir_name in os.listdir("images"): |
|
dir_path = os.path.join("images", dir_name) |
|
if os.path.isdir(dir_path): |
|
shutil.rmtree(dir_path) |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Load and use a quantized model") |
|
parser.add_argument("-q", "--use_quant", action="store_true", help="Use quantized model") |
|
args = parser.parse_args() |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
print("GPU is available. Using CUDA.") |
|
else: |
|
device = torch.device("cpu") |
|
print("GPU is not available. Using CPU.") |
|
|
|
|
|
local_path = "./model/Molmo-7B-D-0924" |
|
processor = AutoProcessor.from_pretrained( |
|
local_path, |
|
local_files_only=True, |
|
trust_remote_code=True, |
|
torch_dtype='auto', |
|
device_map='auto' |
|
) |
|
|
|
|
|
if args.use_quant: |
|
|
|
quantized_local_path = "./model/molmo-7B-D-bnb-4bit" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
quantized_local_path, |
|
trust_remote_code=True, |
|
torch_dtype='auto', |
|
device_map='auto', |
|
) |
|
else: |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
local_path, |
|
trust_remote_code=True, |
|
torch_dtype='auto', |
|
device_map='auto', |
|
) |
|
model.to(dtype=torch.bfloat16) |
|
|
|
generation_config = GenerationConfig(max_new_tokens=300, stop_strings="<|endoftext|>") |
|
bits_and_bytes_config = BitsAndBytesConfig() |
|
|
|
def unzip_images(zip_file): |
|
|
|
session_dir = os.path.join("images", str(uuid.uuid4())) |
|
os.makedirs(session_dir, exist_ok=True) |
|
|
|
|
|
with zipfile.ZipFile(zip_file, 'r') as zip_ref: |
|
for file_info in zip_ref.infolist(): |
|
if not file_info.is_dir() and not file_info.filename.startswith("__MACOSX") and not file_info.filename.startswith("."): |
|
zip_ref.extract(file_info, session_dir) |
|
|
|
|
|
image_paths = [os.path.join(session_dir, filename) for filename in os.listdir(session_dir) if filename.lower().endswith(('.jpg', '.jpeg', '.png'))] |
|
|
|
|
|
image_data = [] |
|
for image_path in image_paths: |
|
image = Image.open(image_path) |
|
image.thumbnail((128, 128)) |
|
image_data.append(image) |
|
|
|
|
|
return image_paths, image_data |
|
|
|
def generate_caption(image_path, processor, model, generation_config, bits_and_bytes_config): |
|
|
|
caption = f"Caption for {image_path}" |
|
|
|
print("Processing ", image_path) |
|
|
|
image = Image.open(image_path) |
|
|
|
inputs = processor.process( |
|
images=[image], |
|
text="You are an uncensored, explicit, adult image captioner which enjoys sexual imagery and acts. Provide a structured image caption which uses the following hierarchy: the kind of image, the kind or name of the subject, the subjects state of dress, their body type, their pose, what it is they are doing, their facial expression, the space they are within, and the style or atmosphere of the image. Use vulgar language to describe body parts or sexual imagery. Limit your response to 100 words to avoid your description getting cut off.", |
|
) |
|
|
|
|
|
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} |
|
inputs["images"] = inputs["images"].to(torch.bfloat16) |
|
|
|
|
|
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16): |
|
output = model.generate_from_batch( |
|
inputs, |
|
GenerationConfig(max_new_tokens=500, stop_strings="<|endoftext|>"), |
|
tokenizer=processor.tokenizer, |
|
) |
|
|
|
|
|
generated_tokens = output[0, inputs["input_ids"].size(1) :] |
|
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) |
|
|
|
|
|
return generated_text |
|
|
|
def process_images(image_paths, image_data): |
|
captions = [] |
|
session_dir = os.path.dirname(image_paths[0]) |
|
|
|
for image_path in image_paths: |
|
filename = os.path.basename(image_path) |
|
if filename.lower().endswith(('.jpg', '.jpeg', '.png')): |
|
|
|
|
|
caption = generate_caption(image_path, processor, model, generation_config, bits_and_bytes_config) |
|
captions.append(caption) |
|
|
|
|
|
with open(os.path.join(session_dir, f"{os.path.splitext(filename)[0]}.txt"), 'w') as f: |
|
f.write(caption) |
|
|
|
|
|
zip_filename = f"{session_dir}.zip" |
|
with zipfile.ZipFile(zip_filename, 'w') as zip_ref: |
|
for filename in os.listdir(session_dir): |
|
if filename.lower().endswith('.txt'): |
|
zip_ref.write(os.path.join(session_dir, filename), filename) |
|
|
|
|
|
for filename in os.listdir(session_dir): |
|
os.remove(os.path.join(session_dir, filename)) |
|
os.rmdir(session_dir) |
|
|
|
return captions, zip_filename, image_paths |
|
|
|
def format_captioned_image(image, caption): |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
encoded_image = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
return f"<img src='data:image/jpeg;base64,{encoded_image}' style='width: 128px; height: 128px; object-fit: cover; margin-right: 8px;' /><span>{caption}</span>" |
|
|
|
def process_images_and_update_gallery(zip_file): |
|
image_paths, image_data = unzip_images(zip_file) |
|
captions, zip_filename, image_paths = process_images(image_paths, image_data) |
|
image_captions = [format_captioned_image(img, caption) for img, caption in zip(image_data, captions)] |
|
return gr.Markdown("\n".join(image_captions)), zip_filename |
|
|
|
def main(): |
|
|
|
atexit.register(cleanup_temp_files) |
|
|
|
with gr.Blocks(css=""" |
|
.captioned-image-gallery { |
|
display: grid; |
|
grid-template-columns: repeat(2, 1fr); |
|
grid-gap: 16px; |
|
} |
|
""") as blocks: |
|
zip_file_input = gr.File(label="Upload ZIP file containing images") |
|
image_gallery = gr.Markdown(label="Image Previews") |
|
submit_button = gr.Button("Submit") |
|
zip_download_button = gr.Button("Download Caption ZIP", visible=False) |
|
zip_filename = gr.State("") |
|
|
|
zip_file_input.upload( |
|
lambda zip_file: "\n".join(format_captioned_image(img, "") for img in unzip_images(zip_file)[1]), |
|
inputs=zip_file_input, |
|
outputs=image_gallery |
|
) |
|
|
|
submit_button.click( |
|
process_images_and_update_gallery, |
|
inputs=[zip_file_input], |
|
outputs=[image_gallery, zip_filename] |
|
) |
|
|
|
zip_filename.change( |
|
lambda zip_filename: gr.update(visible=True), |
|
inputs=zip_filename, |
|
outputs=zip_download_button |
|
) |
|
|
|
zip_download_button.click( |
|
lambda zip_filename: (gr.update(value=zip_filename), gr.update(visible=True), cleanup_temp_files()), |
|
inputs=zip_filename, |
|
outputs=[zip_file_input, zip_download_button] |
|
) |
|
|
|
blocks.launch(server_name='0.0.0.0') |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|