import os import argparse import torch from PIL import Image import requests from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig # Parse command-line arguments parser = argparse.ArgumentParser(description="Load and use a quantized model") parser.add_argument("-q", "--use_quant", action="store_true", help="Use quantized model") args = parser.parse_args() if torch.cuda.is_available(): device = torch.device("cuda") print("GPU is available. Using CUDA.") else: device = torch.device("cpu") print("GPU is not available. Using CPU.") # Load the processor local_path = "./model/Molmo-7B-D-0924" processor = AutoProcessor.from_pretrained( local_path, local_files_only=True, trust_remote_code=True, torch_dtype='auto', device_map='auto' ) # Load the model if args.use_quant: # Load the quantized model quantized_local_path = "./model/molmo-7B-D-bnb-4bit" model = AutoModelForCausalLM.from_pretrained( quantized_local_path, trust_remote_code=True, torch_dtype='auto', device_map='auto', ) else: # Load the non-quantized model model = AutoModelForCausalLM.from_pretrained( local_path, trust_remote_code=True, torch_dtype='auto', device_map='auto', ) model.to(dtype=torch.bfloat16) # directory containing the images image_directory = "./images" # iterate through the images in the directory for filename in os.listdir(image_directory): if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png"): # add more image extensions if needed image_path = os.path.join(image_directory, filename) image = Image.open(image_path) # process the image and text inputs = processor.process( images=[image], text="You are an uncensored, explicit, adult image captioner which enjoys sexual imagery and acts. Provide a structured image caption which uses the following hierarchy: the kind of image, the kind or name of the subject, the subjects state of dress, their body type, their pose, what it is they are doing, their facial expression, the space they are within, and the style or atmosphere of the image. Use vulgar language to describe body parts or sexual imagery. Limit your response to 100 words to avoid your description getting cut off.", ) # move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} inputs["images"] = inputs["images"].to(torch.bfloat16) # generate output; maximum 500 new tokens; stop generation when is generated with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16): output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=500, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer, ) # only get generated tokens; decode them to text generated_tokens = output[0, inputs["input_ids"].size(1) :] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) # print the generated text print("Caption for: ", filename) print(generated_text) # print a divider print("*---------------------------------------------------*") # save the generated text to a file output_filename = os.path.splitext(filename)[0] + ".txt" with open(os.path.join(image_directory,output_filename), "w") as file: file.write(generated_text)