quethrozar commited on
Commit
f5b0da2
1 Parent(s): 9dcd4c2

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.4801
20
- - Answer: {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817}
21
- - Header: {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119}
22
- - Question: {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077}
23
- - Overall Precision: 0.8720
24
- - Overall Recall: 0.8932
25
- - Overall F1: 0.8825
26
- - Overall Accuracy: 0.8040
27
 
28
  ## Model description
29
 
@@ -53,20 +53,20 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 0.0015 | 2.67 | 200 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
59
- | 0.0011 | 5.33 | 400 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
60
- | 0.0011 | 8.0 | 600 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
61
- | 0.0008 | 10.67 | 800 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
62
- | 0.0011 | 13.33 | 1000 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
63
- | 0.0011 | 16.0 | 1200 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
64
- | 0.0017 | 18.67 | 1400 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
65
- | 0.0008 | 21.33 | 1600 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
66
- | 0.0008 | 24.0 | 1800 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
67
- | 0.0009 | 26.67 | 2000 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
68
- | 0.0012 | 29.33 | 2200 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
69
- | 0.0009 | 32.0 | 2400 | 1.4801 | {'precision': 0.8607888631090487, 'recall': 0.9082007343941249, 'f1': 0.8838594401429422, 'number': 817} | {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} | {'precision': 0.8991899189918992, 'recall': 0.9275766016713092, 'f1': 0.9131627056672761, 'number': 1077} | 0.8720 | 0.8932 | 0.8825 | 0.8040 |
70
 
71
 
72
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.5849
20
+ - Answer: {'precision': 0.8488636363636364, 'recall': 0.9143206854345165, 'f1': 0.8803771361225692, 'number': 817}
21
+ - Header: {'precision': 0.5631067961165048, 'recall': 0.48739495798319327, 'f1': 0.5225225225225225, 'number': 119}
22
+ - Question: {'precision': 0.8887859128822985, 'recall': 0.8904363974001857, 'f1': 0.8896103896103896, 'number': 1077}
23
+ - Overall Precision: 0.8555
24
+ - Overall Recall: 0.8763
25
+ - Overall F1: 0.8658
26
+ - Overall Accuracy: 0.8017
27
 
28
  ## Model description
29
 
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 0.7834 | 2.67 | 200 | 0.5897 | {'precision': 0.8059536934950385, 'recall': 0.8947368421052632, 'f1': 0.8480278422273781, 'number': 817} | {'precision': 0.4069767441860465, 'recall': 0.29411764705882354, 'f1': 0.34146341463414637, 'number': 119} | {'precision': 0.8141447368421053, 'recall': 0.9192200557103064, 'f1': 0.8634976013955518, 'number': 1077} | 0.7949 | 0.8723 | 0.8318 | 0.7937 |
59
+ | 0.2848 | 5.33 | 400 | 0.8788 | {'precision': 0.8155136268343816, 'recall': 0.9522643818849449, 'f1': 0.8785996612083569, 'number': 817} | {'precision': 0.46218487394957986, 'recall': 0.46218487394957986, 'f1': 0.46218487394957986, 'number': 119} | {'precision': 0.8724584103512015, 'recall': 0.8765088207985144, 'f1': 0.8744789254284391, 'number': 1077} | 0.8246 | 0.8828 | 0.8527 | 0.7916 |
60
+ | 0.1446 | 8.0 | 600 | 1.0402 | {'precision': 0.8363844393592678, 'recall': 0.8947368421052632, 'f1': 0.8645771732702543, 'number': 817} | {'precision': 0.5894736842105263, 'recall': 0.47058823529411764, 'f1': 0.5233644859813084, 'number': 119} | {'precision': 0.8886861313868614, 'recall': 0.904363974001857, 'f1': 0.8964565117349288, 'number': 1077} | 0.8528 | 0.8748 | 0.8637 | 0.7891 |
61
+ | 0.0791 | 10.67 | 800 | 1.1878 | {'precision': 0.8659549228944247, 'recall': 0.8935128518971848, 'f1': 0.8795180722891566, 'number': 817} | {'precision': 0.48360655737704916, 'recall': 0.4957983193277311, 'f1': 0.4896265560165975, 'number': 119} | {'precision': 0.8647007805724197, 'recall': 0.9257195914577531, 'f1': 0.8941704035874439, 'number': 1077} | 0.8432 | 0.8872 | 0.8647 | 0.7973 |
62
+ | 0.0459 | 13.33 | 1000 | 1.3884 | {'precision': 0.8078175895765473, 'recall': 0.9106487148102815, 'f1': 0.856156501726122, 'number': 817} | {'precision': 0.5789473684210527, 'recall': 0.46218487394957986, 'f1': 0.514018691588785, 'number': 119} | {'precision': 0.8819702602230484, 'recall': 0.8811513463324049, 'f1': 0.8815606130980028, 'number': 1077} | 0.8356 | 0.8684 | 0.8516 | 0.7831 |
63
+ | 0.0278 | 16.0 | 1200 | 1.4707 | {'precision': 0.8415051311288484, 'recall': 0.9033047735618115, 'f1': 0.8713105076741442, 'number': 817} | {'precision': 0.5869565217391305, 'recall': 0.453781512605042, 'f1': 0.5118483412322274, 'number': 119} | {'precision': 0.8690685413005272, 'recall': 0.9182915506035283, 'f1': 0.8930022573363431, 'number': 1077} | 0.8453 | 0.8847 | 0.8646 | 0.7801 |
64
+ | 0.0105 | 18.67 | 1400 | 1.5749 | {'precision': 0.843069873997709, 'recall': 0.9008567931456548, 'f1': 0.8710059171597634, 'number': 817} | {'precision': 0.5426356589147286, 'recall': 0.5882352941176471, 'f1': 0.5645161290322581, 'number': 119} | {'precision': 0.8799630655586335, 'recall': 0.8848653667595172, 'f1': 0.8824074074074075, 'number': 1077} | 0.8436 | 0.8738 | 0.8585 | 0.7800 |
65
+ | 0.0083 | 21.33 | 1600 | 1.5530 | {'precision': 0.8551236749116607, 'recall': 0.8886168910648715, 'f1': 0.8715486194477792, 'number': 817} | {'precision': 0.5727272727272728, 'recall': 0.5294117647058824, 'f1': 0.5502183406113538, 'number': 119} | {'precision': 0.8669032830523514, 'recall': 0.9071494893221913, 'f1': 0.8865698729582577, 'number': 1077} | 0.8466 | 0.8773 | 0.8617 | 0.8007 |
66
+ | 0.0045 | 24.0 | 1800 | 1.5849 | {'precision': 0.8488636363636364, 'recall': 0.9143206854345165, 'f1': 0.8803771361225692, 'number': 817} | {'precision': 0.5631067961165048, 'recall': 0.48739495798319327, 'f1': 0.5225225225225225, 'number': 119} | {'precision': 0.8887859128822985, 'recall': 0.8904363974001857, 'f1': 0.8896103896103896, 'number': 1077} | 0.8555 | 0.8763 | 0.8658 | 0.8017 |
67
+ | 0.0025 | 26.67 | 2000 | 1.6119 | {'precision': 0.8464203233256351, 'recall': 0.8971848225214198, 'f1': 0.8710635769459298, 'number': 817} | {'precision': 0.5566037735849056, 'recall': 0.4957983193277311, 'f1': 0.5244444444444444, 'number': 119} | {'precision': 0.8709386281588448, 'recall': 0.8960074280408542, 'f1': 0.8832951945080092, 'number': 1077} | 0.8447 | 0.8728 | 0.8585 | 0.7914 |
68
+ | 0.0019 | 29.33 | 2200 | 1.5579 | {'precision': 0.8661971830985915, 'recall': 0.9033047735618115, 'f1': 0.884361893349311, 'number': 817} | {'precision': 0.5660377358490566, 'recall': 0.5042016806722689, 'f1': 0.5333333333333334, 'number': 119} | {'precision': 0.8654188948306596, 'recall': 0.9015784586815228, 'f1': 0.8831286948613006, 'number': 1077} | 0.8505 | 0.8788 | 0.8644 | 0.7971 |
69
+ | 0.0008 | 32.0 | 2400 | 1.5983 | {'precision': 0.8530424799081515, 'recall': 0.9094247246022031, 'f1': 0.8803317535545023, 'number': 817} | {'precision': 0.5714285714285714, 'recall': 0.5042016806722689, 'f1': 0.5357142857142857, 'number': 119} | {'precision': 0.8768248175182481, 'recall': 0.8922934076137419, 'f1': 0.8844914864242981, 'number': 1077} | 0.8514 | 0.8763 | 0.8636 | 0.7982 |
70
 
71
 
72
  ### Framework versions
logs/events.out.tfevents.1684849976.MSI.371.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc8f451e10bd42eb3f7bfda65bf0e55d443c454ec95c4ee7548ce3b6ab3a130c
3
- size 11688
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f21dd8752b09c69ef7585ecb8fd45b87357943be573c1573025dc10fd3d0e66
3
+ size 12703
logs/events.out.tfevents.1684851779.MSI.371.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74019dcafc8c09557da38338dda9928517063385e20b8ff356a7f36f343d1c84
3
+ size 592
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7485378d64b55286ab9b1656af424bf1693e2d79108a72a886e04be6a441d43
3
  size 520823797
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dfea4edb71b5652004dceef44ec85ecca38ed78e0d7747c289e5a4ee3c6192d
3
  size 520823797