File size: 22,992 Bytes
af16720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageOps
import torch
import matplotlib.pyplot as plt
import apply_net
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
label_map = {
"background": 0,
"hat": 1,
"hair": 2,
"sunglasses": 3,
"upper_clothes": 4,
"skirt": 5,
"pants": 6,
"dress": 7,
"belt": 8,
"left_shoe": 9,
"right_shoe": 10,
"head": 11,
"left_leg": 12,
"right_leg": 13,
"left_arm": 14,
"right_arm": 15,
"bag": 16,
"scarf": 17,
}
dense_map = {
"background" : [0],
"torso" : [1,2],
"right_hand" : [3],
"left_hand" : [4],
"left_foot" : [5],
"right_foot" : [6],
"upper_leg_right" : [7,9],
"upper_leg_left" : [8,10],
"lower_leg_right" : [11,13],
"lower_leg_left" : [12,14],
"upper_arm_left" : [15,17],
"upper_arm_right" : [16,18],
"lower_arm_left" : [19,21],
"lower_arm_right" : [20,22],
"head" : [23,24]
}
def extend_arm_mask(wrist, elbow, scale):
wrist = elbow + scale * (wrist - elbow)
return wrist
def hole_fill(img):
img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0)
img_copy = img.copy()
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
cv2.floodFill(img, mask, (0, 0), 255)
img_inverse = cv2.bitwise_not(img)
dst = cv2.bitwise_or(img_copy, img_inverse)
return dst
def refine_mask(mask):
contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
area = []
for j in range(len(contours)):
a_d = cv2.contourArea(contours[j], True)
area.append(abs(a_d))
refine_mask = np.zeros_like(mask).astype(np.uint8)
if len(area) != 0:
i = area.index(max(area))
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
return refine_mask
def get_mask_location_new(category, model_parse: Image.Image, keypoint: dict, width=384,height=512, dense_pose = None):
if category != 'lower_body_shoes' and category != 'lower_body_boots' and category != 'full_body' and category != 'dresses' and category != 'upper_clothes' and category != 'lower_body_pants' and category != 'lower_body_skirts':
raise ValueError("Category not found")
#mask for lower_body_shoes, lower_body_boots
if category == 'lower_body_shoes':
dense_mask = np.zeros((height, width))
dense_mask += (dense_pose == 5).astype(np.float32) + \
(dense_pose == 6).astype(np.float32)
dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5)
mask = Image.fromarray(dense_mask.astype(np.uint8) * 255)
mask_gray = Image.fromarray(dense_mask.astype(np.uint8) * 127)
return mask, mask_gray, dense_mask
if category == 'lower_body_boots':
dense_mask = np.zeros((height, width))
dense_mask += (dense_pose == 5).astype(np.float32) + \
(dense_pose == 6).astype(np.float32) + \
(dense_pose == 11).astype(np.float32) + \
(dense_pose == 12).astype(np.float32) + \
(dense_pose == 13).astype(np.float32) + \
(dense_pose == 14).astype(np.float32)
dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5)
mask = Image.fromarray(dense_mask.astype(np.uint8) * 255)
mask_gray = Image.fromarray(dense_mask.astype(np.uint8) * 127)
return mask, mask_gray, dense_mask
#mask others category
im_parse = model_parse.resize((width, height), Image.NEAREST)
parse_array = np.array(im_parse)
arm_width = 40
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 3).astype(np.float32) + \
(parse_array == 11).astype(np.float32)
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
(parse_array == label_map["hat"]).astype(np.float32) + \
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
(parse_array == label_map["bag"]).astype(np.float32)
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
arms_left = (parse_array == 14).astype(np.float32)
arms_right = (parse_array == 15).astype(np.float32)
arms = arms_left + arms_right
if category == 'dresses' or category == 'full_body': # upper_clothes + lower_body_skirts
parse_mask = (parse_array == 7).astype(np.float32) + \
(parse_array == 4).astype(np.float32) + \
(parse_array == 5).astype(np.float32) + \
(parse_array == 6).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'upper_clothes' : # -> upper_clothes
parse_mask = (parse_array == 4).astype(np.float32)
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
(parse_array == label_map["pants"]).astype(np.float32)
# parser_mask_fixed += parser_mask_fixed_lower_cloth
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'lower_body_pants' or category == 'lower_body_skirts': # -> remove
parse_mask = (parse_array == 6).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32) + \
(parse_array == 5).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
(parse_array == 14).astype(np.float32) + \
(parse_array == 15).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
else:
raise NotImplementedError
# Load pose points
pose_data = keypoint["pose_keypoints_2d"]
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 2))
im_arms_left = Image.new('L', (width, height))
im_arms_right = Image.new('L', (width, height))
arms_draw_left = ImageDraw.Draw(im_arms_left)
arms_draw_right = ImageDraw.Draw(im_arms_right)
if category == 'dresses' or category == 'upper_clothes' or category == 'full_body':
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
ARM_LINE_WIDTH = int(arm_width / 512 * height)
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
shoulder_right[1] + ARM_LINE_WIDTH // 2]
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
im_arms_right = arms_right
else:
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)
if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
im_arms_left = arms_left
else:
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
arms_draw_left.line (np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
parser_mask_fixed += hands_left + hands_right
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
if category == 'dresses' or category == 'upper_clothes' or category == 'full_body':
neck_mask = (parse_array == 18).astype(np.float32)
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
parse_mask = np.logical_or(parse_mask, neck_mask)
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
parse_mask += np.logical_or(parse_mask, arm_mask)
# parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
# parse_mask_img.save("mask_their_pre.png")
# parser_mask_changeable_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
# parser_mask_changeable_img.save("mask_change.png")
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
#convert parse_mask to iamge and save
# parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
# parse_mask_img.save("mask_their.png")
#my code
#get pose points
hip_right = np.multiply(tuple(pose_data[8][:2]), height / 512.0)
hip_left = np.multiply(tuple(pose_data[11][:2]), height / 512.0)
knee_right = np.multiply(tuple(pose_data[9][:2]), height / 512.0)
knee_left = np.multiply(tuple(pose_data[12][:2]), height / 512.0)
ankle_right = np.multiply(tuple(pose_data[10][:2]), height / 512.0)
ankle_left = np.multiply(tuple(pose_data[13][:2]), height / 512.0)
#for upper clothes
mid_point_left = hip_left + (knee_left - hip_left) / 5
mid_point_right = hip_right + (knee_right - hip_right) / 5
extra_mask = Image.new('L', (width, height))
extra_draw = ImageDraw.Draw(extra_mask)
#mask for dresses category
if category == 'dresses' or category == 'lower_body_skirts' or category == 'lower_body_pants':
#draw line from 6 points
if ankle_left[0] != 0 and ankle_right[0] != 0 and ankle_left[1] != 0 and ankle_right[1] != 0:
extra_draw.line(np.concatenate((ankle_right, ankle_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
extra_draw.line(np.concatenate((hip_right, knee_right, ankle_right)).astype(np.uint16).tolist(), 'white', arm_width+20, 'curve')
extra_draw.line(np.concatenate((hip_left, knee_left, ankle_left)).astype(np.uint16).tolist(), 'white', arm_width+20, 'curve')
extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
extra_draw.line(np.concatenate((knee_right, knee_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
elif knee_left[0] != 0 and knee_right[0] != 0 and knee_left[1] != 0 and knee_right[1] != 0:
extra_draw.line(np.concatenate((hip_right, knee_right)).astype(np.uint16).tolist(), 'white', 1, 'curve')
extra_draw.line(np.concatenate((hip_left, knee_left)).astype(np.uint16).tolist(), 'white', arm_width, 'curve')
extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', arm_width, 'curve')
else:
pass
if category == 'lower_body_pants':
extra_mask = hole_fill(np.array(extra_mask))
extra_mask = cv2.dilate(np.array(extra_mask), np.ones((5, 5), np.uint16), iterations=int((knee_right[1] - hip_right[1])/10))
dense = (dense_pose == 1).astype(np.float32) +\
(dense_pose == 2).astype(np.float32) +\
(dense_pose == 7).astype(np.float32) +\
(dense_pose == 8).astype(np.float32) +\
(dense_pose == 9).astype(np.float32) +\
(dense_pose == 10).astype(np.float32)
extra_mask = np.logical_and(extra_mask, dense)
extra_mask = cv2.dilate((extra_mask * 255).astype(np.uint8), np.ones((5, 5), np.uint16), iterations=5)
extra_mask = Image.fromarray((extra_mask * 255).astype(np.uint8), 'L')
#mask for upper_clothes
if category == "upper_clothes":
if knee_left[0] != 0 and knee_right[0] != 0 and knee_left[1] != 0 and knee_right[1] != 0:
extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
extra_draw.line(np.concatenate((mid_point_right, mid_point_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
extra_draw.line(np.concatenate((hip_right, mid_point_right)).astype(np.uint16).tolist(), 'white', 40, 'curve')
extra_draw.line(np.concatenate((hip_left, mid_point_left)).astype(np.uint16).tolist(), 'white', 40, 'curve')
else:
pass
extra_mask = cv2.dilate(np.array(extra_mask), np.ones((5, 5), np.uint16), iterations=4)
extra_mask = Image.fromarray(hole_fill(np.array(extra_mask)))
extra_mask = ImageOps.invert(extra_mask)
extra_mask.save("mask_mine.png")
if category == 'lower_body_pants':
parse_mask = np.logical_or(parse_mask, parser_mask_fixed)
parse_mask = np.logical_and(parse_mask, extra_mask)
else:
parse_mask = np.logical_and(parse_mask, extra_mask)
parse_mask = np.logical_or(parse_mask, parser_mask_fixed)
parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
parse_mask_img.save("mask_all.png")
inpaint_mask = 1 - parse_mask
#densepose
if dense_pose is not None:
dense_mask = np.zeros((height, width))
dense_fixed = np.zeros((height, width))
dense_foot = (dense_pose == 5).astype(np.float32) + \
(dense_pose == 6).astype(np.float32)
dense_hand = (dense_pose == 3).astype(np.float32) + \
(dense_pose == 4).astype(np.float32)
dense_fixed = dense_foot + dense_hand
#resolving users' upper clothes in hand
up_clothes = (parse_array == 4).astype(np.float32)
low_clothes = (parse_array == 6).astype(np.float32) + \
(parse_array == 5).astype(np.float32) +\
(parse_array == 7).astype(np.float32)
up_clothes = cv2.dilate(up_clothes, np.ones((5, 5), np.uint16), iterations=3)
low_clothes = cv2.dilate(low_clothes, np.ones((5, 5), np.uint16), iterations=3)
dense_fixed = np.logical_and(dense_fixed, np.logical_not(up_clothes))
dense_fixed = np.logical_and(dense_fixed, np.logical_not(low_clothes))
dense_fixed = (dense_fixed).astype(np.float32)
#masking for upper_clothes and lower_body
if category == 'upper_clothes' or category == 'full_body' or category == 'dresses':
dense_mask += (dense_pose == 1).astype(np.float32) + \
(dense_pose == 2).astype(np.float32) + \
(dense_pose == 15).astype(np.float32) + \
(dense_pose == 16).astype(np.float32) + \
(dense_pose == 17).astype(np.float32) + \
(dense_pose == 18).astype(np.float32) + \
(dense_pose == 19).astype(np.float32) + \
(dense_pose == 20).astype(np.float32) + \
(dense_pose == 21).astype(np.float32) + \
(dense_pose == 22).astype(np.float32)
if category == 'lower_body_pants' or category == 'lower_body_skirts' or category == 'full_body' or category == 'dresses':
dense_mask += (dense_pose == 7).astype(np.float32) + \
(dense_pose == 8).astype(np.float32) + \
(dense_pose == 9).astype(np.float32) + \
(dense_pose == 10).astype(np.float32) + \
(dense_pose == 11).astype(np.float32) + \
(dense_pose == 12).astype(np.float32) + \
(dense_pose == 13).astype(np.float32) + \
(dense_pose == 14).astype(np.float32)
# if category == 'lower_body_pants' or category == 'lower_body_skirts':
# dense_fixed += (dense_pose == 15).astype(np.float32) + \
# (dense_pose == 16).astype(np.float32) + \
# (dense_pose == 17).astype(np.float32) + \
# (dense_pose == 18).astype(np.float32) + \
# (dense_pose == 19).astype(np.float32) + \
# (dense_pose == 20).astype(np.float32) + \
# (dense_pose == 21).astype(np.float32) + \
# (dense_pose == 22).astype(np.float32)
# dense_fixed = cv2.dilate(dense_fixed, np.ones((5, 5), np.uint16), iterations=1)
if category == 'lower_body_skirts' or category == 'dresses':
#masking giữa 2 chân
extra_mask = ImageOps.invert(extra_mask)
extra_mask = np.array(extra_mask)
extra_mask = cv2.dilate(extra_mask, np.ones((5, 5), np.uint16), iterations=9)
dense_mask = np.logical_or(dense_mask, extra_mask)
dense_mask = dense_mask.astype(np.float32)
if category == "lower_body_pants" :
extra_dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5)
backgroud_mask = (dense_pose == 0).astype(np.float32)
extra_dense_mask = np.logical_and(extra_dense_mask, np.logical_not(backgroud_mask))
dense_mask = np.logical_or(dense_mask, extra_dense_mask)
dense_mask = dense_mask.astype(np.float32)
#grow the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * 10 + 1, 2 * 10 + 1))
dense_mask = cv2.dilate(dense_mask, kernel, iterations=1)
dense_mask_img = Image.fromarray(dense_mask.astype(np.uint8) * 255)
dense_mask_img.save("mask_new.png")
#refine for upper_clothes
if category == 'upper_clothes':
mid_y = max(mid_point_left[1], mid_point_right[1])
y_grid = np.arange(dense_mask.shape[0]).reshape(-1, 1)
lower_half_mask = y_grid > mid_y
lower_half_mask = np.tile(lower_half_mask, (1, dense_mask.shape[1]))
dense_mask[lower_half_mask] = 0
inpaint_mask = np.logical_or(inpaint_mask, dense_mask)
img = np.where(inpaint_mask, 255, 0)
dst = hole_fill(img.astype(np.uint8))
# inpaint_mask = dst / 255 * 1
# inpaint_mask_img = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
# inpaint_mask_img.save("mask_inpaint_before.png")
dst = refine_mask(dst)
inpaint_mask = dst / 255 * 1
inpaint_mask_img = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
inpaint_mask_img.save("mask_inpaint.png")
#refine for upper_clothes
#keep hand, foot, head
inpaint_mask = np.logical_and(inpaint_mask, np.logical_not(dense_fixed))
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
return mask, mask_gray, inpaint_mask
def merge_mask_image(image, mask):
mask = mask.convert("L")
white_image = Image.new("RGB", image.size, "white")
inverted_mask = Image.eval(mask, lambda x: 255 - x)
combined_image = Image.composite(image, white_image, inverted_mask)
return combined_image
#get bbox from densepose
def get_bbox_from_densepose(image, densepose_array, padding=0):
body_pixels = np.column_stack(np.where(densepose_array > 0))
if body_pixels.size == 0:
return None # No body pixels found
min_y, min_x = body_pixels.min(axis=0)
max_y, max_x = body_pixels.max(axis=0)
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(densepose_array.shape[1], max_x + padding)
max_y = min(densepose_array.shape[0], max_y + padding)
bbox = (min_x, min_y, max_x, max_y)
mask = np.zeros_like(image)
min_x, min_y, max_x, max_y = bbox
mask[min_y:max_y, min_x:max_x, :] = 255
masked_image = np.where(mask == 255, image, 0)
masked_image = Image.fromarray(masked_image)
return masked_image
#testing
import matplotlib.pyplot as plt
from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
# from humanparsing.run_parsing import Parsing
if __name__ == '__main__':
device = "cuda" if torch.cuda.is_available() else "cpu"
openpose_model = OpenPose(0)
openpose_model.preprocessor.body_estimation.model.to(device)
model_image = Image.open('../model1.jpg').copy()
model_image = model_image.resize((768, 1024))
human_img_arg = _apply_exif_orientation(model_image.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
dense_pose = args.func(args,human_img_arg)
Image.fromarray(dense_pose[0][:,:,::-1]).resize((768,1024)).save("densepose.png")
dense_pose = dense_pose[1]
bbox_image = get_bbox_from_densepose(model_image.resize((384,512)), dense_pose, 15)
bbox_image.save("zzz.png")
#get keypoints
keypoints = openpose_model(bbox_image)
parsing_model = Parsing(0)
model_parse, _ = parsing_model(model_image.resize((384,512)))
model_parse.save("model_parse.png")
cate = ['upper_clothes', 'lower_body_pants', 'lower_body_skirts', 'dresses', 'full_body', 'lower_body_shoes', 'lower_body_boots']
# cate = ['lower_body_pants']
for category in cate:
mask, mask_gray, mask_arr = get_mask_location_new(category, model_parse, keypoints, width=384, height=512, dense_pose = dense_pose)
mask.resize((768, 1024)).save(f"mask_{category}.png")
model_image = model_image.resize((384, 512))
# print("kkkkkkkkk")
# mask = Image.open("mask_fixed.png")
model_image_end = merge_mask_image(model_image, mask)
model_image_end.save(f"model_image_{category}.png")
|