File size: 22,992 Bytes
af16720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageOps
import torch
import matplotlib.pyplot as plt

import apply_net
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation

label_map = {
    "background": 0,
    "hat": 1,
    "hair": 2,
    "sunglasses": 3,
    "upper_clothes": 4,
    "skirt": 5,
    "pants": 6,
    "dress": 7,
    "belt": 8,
    "left_shoe": 9,
    "right_shoe": 10,
    "head": 11,
    "left_leg": 12,
    "right_leg": 13,
    "left_arm": 14,
    "right_arm": 15,
    "bag": 16,
    "scarf": 17,
}

dense_map = {
    "background" : [0],
    "torso" : [1,2],
    "right_hand" : [3],
    "left_hand" : [4],
    "left_foot" : [5],
    "right_foot" : [6],
    "upper_leg_right" : [7,9],
    "upper_leg_left" : [8,10],
    "lower_leg_right" : [11,13],
    "lower_leg_left" : [12,14],
    "upper_arm_left" : [15,17],
    "upper_arm_right" : [16,18],
    "lower_arm_left" : [19,21],
    "lower_arm_right" : [20,22],
    "head" : [23,24]
}

def extend_arm_mask(wrist, elbow, scale):
  wrist = elbow + scale * (wrist - elbow)
  return wrist

def hole_fill(img):
    img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0)
    img_copy = img.copy()
    mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)

    cv2.floodFill(img, mask, (0, 0), 255)
    img_inverse = cv2.bitwise_not(img)
    dst = cv2.bitwise_or(img_copy, img_inverse)
    return dst

def refine_mask(mask):
    contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
                                           cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area = []
    for j in range(len(contours)):
        a_d = cv2.contourArea(contours[j], True)
        area.append(abs(a_d))
    refine_mask = np.zeros_like(mask).astype(np.uint8)
    if len(area) != 0:
        i = area.index(max(area))
        cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)

    return refine_mask

def get_mask_location_new(category, model_parse: Image.Image, keypoint: dict, width=384,height=512, dense_pose = None):

    if category != 'lower_body_shoes' and category != 'lower_body_boots' and category != 'full_body' and category != 'dresses' and category != 'upper_clothes' and category != 'lower_body_pants' and category != 'lower_body_skirts':
        raise ValueError("Category not found")
    
    
    #mask for lower_body_shoes, lower_body_boots
    if category == 'lower_body_shoes':
        dense_mask = np.zeros((height, width))
        dense_mask += (dense_pose == 5).astype(np.float32) + \
                        (dense_pose == 6).astype(np.float32)
        
        dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5)

        mask = Image.fromarray(dense_mask.astype(np.uint8) * 255)
        mask_gray = Image.fromarray(dense_mask.astype(np.uint8) * 127)

        return mask, mask_gray, dense_mask


    if category == 'lower_body_boots':
        dense_mask = np.zeros((height, width))

        dense_mask += (dense_pose == 5).astype(np.float32) + \
                        (dense_pose == 6).astype(np.float32) + \
                        (dense_pose == 11).astype(np.float32) + \
                        (dense_pose == 12).astype(np.float32) + \
                        (dense_pose == 13).astype(np.float32) + \
                        (dense_pose == 14).astype(np.float32)

        dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5)

        mask = Image.fromarray(dense_mask.astype(np.uint8) * 255)
        mask_gray = Image.fromarray(dense_mask.astype(np.uint8) * 127)

        return mask, mask_gray, dense_mask
    
    #mask others category
    im_parse = model_parse.resize((width, height), Image.NEAREST)
    parse_array = np.array(im_parse)

    arm_width = 40

    parse_head = (parse_array == 1).astype(np.float32) + \
                 (parse_array == 3).astype(np.float32) + \
                 (parse_array == 11).astype(np.float32)

    parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
                        (parse_array == label_map["right_shoe"]).astype(np.float32) + \
                        (parse_array == label_map["hat"]).astype(np.float32) + \
                        (parse_array == label_map["sunglasses"]).astype(np.float32) + \
                        (parse_array == label_map["bag"]).astype(np.float32)

    parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)

    arms_left = (parse_array == 14).astype(np.float32)
    arms_right = (parse_array == 15).astype(np.float32)
    arms = arms_left + arms_right

    if category == 'dresses' or category == 'full_body': # upper_clothes + lower_body_skirts
        parse_mask = (parse_array == 7).astype(np.float32) + \
                     (parse_array == 4).astype(np.float32) + \
                     (parse_array == 5).astype(np.float32) + \
                     (parse_array == 6).astype(np.float32)

        parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))

    elif category == 'upper_clothes' : # -> upper_clothes
        parse_mask = (parse_array == 4).astype(np.float32) 
        parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
                                        (parse_array == label_map["pants"]).astype(np.float32)
        # parser_mask_fixed += parser_mask_fixed_lower_cloth
        parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
    elif category == 'lower_body_pants' or category == 'lower_body_skirts': # -> remove
        parse_mask = (parse_array == 6).astype(np.float32) + \
                     (parse_array == 12).astype(np.float32) + \
                     (parse_array == 13).astype(np.float32) + \
                     (parse_array == 5).astype(np.float32)
        parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
                             (parse_array == 14).astype(np.float32) + \
                             (parse_array == 15).astype(np.float32)
        parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
    else:
        raise NotImplementedError

    # Load pose points
    pose_data = keypoint["pose_keypoints_2d"]
    pose_data = np.array(pose_data)
    pose_data = pose_data.reshape((-1, 2))

    im_arms_left = Image.new('L', (width, height))
    im_arms_right = Image.new('L', (width, height))
    arms_draw_left = ImageDraw.Draw(im_arms_left)
    arms_draw_right = ImageDraw.Draw(im_arms_right)
    if category == 'dresses' or category == 'upper_clothes' or category == 'full_body':
        shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
        shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
        elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
        elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
        wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
        wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
        ARM_LINE_WIDTH = int(arm_width / 512 * height)
        size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
        size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
                      shoulder_right[1] + ARM_LINE_WIDTH // 2]
        
    
        if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
            im_arms_right = arms_right
        else:
            wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
            arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
            arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)

        if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
            im_arms_left = arms_left
        else:
            wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
            arms_draw_left.line (np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
            arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)

        hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
        hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
        parser_mask_fixed += hands_left + hands_right

    parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
    parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
    if category == 'dresses' or category == 'upper_clothes' or category == 'full_body':
        neck_mask = (parse_array == 18).astype(np.float32)
        neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
        neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
        parse_mask = np.logical_or(parse_mask, neck_mask)
        arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
        parse_mask += np.logical_or(parse_mask, arm_mask)

    # parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
    # parse_mask_img.save("mask_their_pre.png")

    # parser_mask_changeable_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
    # parser_mask_changeable_img.save("mask_change.png")

    parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))

    #convert parse_mask to iamge and save
    # parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
    # parse_mask_img.save("mask_their.png")

    #my code

    #get pose points
    hip_right = np.multiply(tuple(pose_data[8][:2]), height / 512.0)
    hip_left = np.multiply(tuple(pose_data[11][:2]), height / 512.0)
    knee_right = np.multiply(tuple(pose_data[9][:2]), height / 512.0)
    knee_left = np.multiply(tuple(pose_data[12][:2]), height / 512.0)
    ankle_right = np.multiply(tuple(pose_data[10][:2]), height / 512.0)
    ankle_left = np.multiply(tuple(pose_data[13][:2]), height / 512.0)

    #for upper clothes
    mid_point_left = hip_left + (knee_left - hip_left) / 5
    mid_point_right = hip_right + (knee_right - hip_right) / 5

    extra_mask = Image.new('L', (width, height))
    extra_draw = ImageDraw.Draw(extra_mask)


    #mask for dresses category
    if category == 'dresses' or category == 'lower_body_skirts' or category == 'lower_body_pants':
        
        #draw line from 6 points
        if ankle_left[0] != 0 and ankle_right[0] != 0 and ankle_left[1] != 0 and ankle_right[1] != 0:
            extra_draw.line(np.concatenate((ankle_right, ankle_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
            extra_draw.line(np.concatenate((hip_right, knee_right, ankle_right)).astype(np.uint16).tolist(), 'white', arm_width+20, 'curve')
            extra_draw.line(np.concatenate((hip_left, knee_left, ankle_left)).astype(np.uint16).tolist(), 'white', arm_width+20, 'curve')
            extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
            extra_draw.line(np.concatenate((knee_right, knee_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')

        elif knee_left[0] != 0 and knee_right[0] != 0 and knee_left[1] != 0 and knee_right[1] != 0:
            extra_draw.line(np.concatenate((hip_right, knee_right)).astype(np.uint16).tolist(), 'white', 1, 'curve')
            extra_draw.line(np.concatenate((hip_left, knee_left)).astype(np.uint16).tolist(), 'white', arm_width, 'curve')
            extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', arm_width, 'curve')
        else:
            pass 

        if category == 'lower_body_pants':
            extra_mask = hole_fill(np.array(extra_mask))
            extra_mask = cv2.dilate(np.array(extra_mask), np.ones((5, 5), np.uint16), iterations=int((knee_right[1] - hip_right[1])/10))
            
            dense = (dense_pose == 1).astype(np.float32) +\
                    (dense_pose == 2).astype(np.float32) +\
                    (dense_pose == 7).astype(np.float32) +\
                    (dense_pose == 8).astype(np.float32) +\
                    (dense_pose == 9).astype(np.float32) +\
                    (dense_pose == 10).astype(np.float32)
            extra_mask = np.logical_and(extra_mask, dense)
            extra_mask = cv2.dilate((extra_mask * 255).astype(np.uint8), np.ones((5, 5), np.uint16), iterations=5)
            extra_mask = Image.fromarray((extra_mask * 255).astype(np.uint8), 'L')   

    #mask for upper_clothes
    if category == "upper_clothes":
        if knee_left[0] != 0 and knee_right[0] != 0 and knee_left[1] != 0 and knee_right[1] != 0:

            extra_draw.line(np.concatenate((hip_right, hip_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
            extra_draw.line(np.concatenate((mid_point_right, mid_point_left)).astype(np.uint16).tolist(), 'white', 1, 'curve')
            extra_draw.line(np.concatenate((hip_right, mid_point_right)).astype(np.uint16).tolist(), 'white', 40, 'curve')
            extra_draw.line(np.concatenate((hip_left, mid_point_left)).astype(np.uint16).tolist(), 'white', 40, 'curve')
        else:
            pass
        extra_mask = cv2.dilate(np.array(extra_mask), np.ones((5, 5), np.uint16), iterations=4)

    extra_mask = Image.fromarray(hole_fill(np.array(extra_mask))) 

    extra_mask = ImageOps.invert(extra_mask)
    extra_mask.save("mask_mine.png")

    if category == 'lower_body_pants':
        parse_mask = np.logical_or(parse_mask, parser_mask_fixed)
        parse_mask = np.logical_and(parse_mask, extra_mask)
    else:
        parse_mask = np.logical_and(parse_mask, extra_mask)
        parse_mask = np.logical_or(parse_mask, parser_mask_fixed)


    parse_mask_img = Image.fromarray(parse_mask.astype(np.uint8) * 255)
    parse_mask_img.save("mask_all.png")

    inpaint_mask = 1 - parse_mask
    
    #densepose
    if dense_pose is not None:

        dense_mask = np.zeros((height, width))
        dense_fixed = np.zeros((height, width))

        dense_foot = (dense_pose == 5).astype(np.float32) + \
                        (dense_pose == 6).astype(np.float32)

        dense_hand = (dense_pose == 3).astype(np.float32) + \
                        (dense_pose == 4).astype(np.float32)

        dense_fixed =  dense_foot + dense_hand

        #resolving users' upper clothes in hand
        up_clothes = (parse_array == 4).astype(np.float32)
        low_clothes = (parse_array == 6).astype(np.float32) + \
                        (parse_array == 5).astype(np.float32) +\
                        (parse_array == 7).astype(np.float32) 
        up_clothes = cv2.dilate(up_clothes, np.ones((5, 5), np.uint16), iterations=3)
        low_clothes = cv2.dilate(low_clothes, np.ones((5, 5), np.uint16), iterations=3)

        dense_fixed = np.logical_and(dense_fixed, np.logical_not(up_clothes))
        dense_fixed = np.logical_and(dense_fixed, np.logical_not(low_clothes))
        dense_fixed = (dense_fixed).astype(np.float32)

    #masking for upper_clothes and lower_body
        if category == 'upper_clothes' or category == 'full_body' or category == 'dresses':
            dense_mask += (dense_pose == 1).astype(np.float32) + \
                    (dense_pose == 2).astype(np.float32) + \
                    (dense_pose == 15).astype(np.float32) + \
                    (dense_pose == 16).astype(np.float32) + \
                    (dense_pose == 17).astype(np.float32) + \
                    (dense_pose == 18).astype(np.float32) + \
                    (dense_pose == 19).astype(np.float32) + \
                    (dense_pose == 20).astype(np.float32) + \
                    (dense_pose == 21).astype(np.float32) + \
                    (dense_pose == 22).astype(np.float32)
        if category == 'lower_body_pants' or category == 'lower_body_skirts' or category == 'full_body' or category == 'dresses':
            dense_mask += (dense_pose == 7).astype(np.float32) + \
                    (dense_pose == 8).astype(np.float32) + \
                    (dense_pose == 9).astype(np.float32) + \
                    (dense_pose == 10).astype(np.float32) + \
                    (dense_pose == 11).astype(np.float32) + \
                    (dense_pose == 12).astype(np.float32) + \
                    (dense_pose == 13).astype(np.float32) + \
                    (dense_pose == 14).astype(np.float32)
            
            # if category == 'lower_body_pants' or category == 'lower_body_skirts':
            #     dense_fixed += (dense_pose == 15).astype(np.float32) + \
            #             (dense_pose == 16).astype(np.float32) + \
            #             (dense_pose == 17).astype(np.float32) + \
            #             (dense_pose == 18).astype(np.float32) + \
            #             (dense_pose == 19).astype(np.float32) + \
            #             (dense_pose == 20).astype(np.float32) + \
            #             (dense_pose == 21).astype(np.float32) + \
            #             (dense_pose == 22).astype(np.float32)
            #     dense_fixed = cv2.dilate(dense_fixed, np.ones((5, 5), np.uint16), iterations=1)

            
            if category == 'lower_body_skirts' or category == 'dresses':
                #masking giữa 2 chân
                extra_mask = ImageOps.invert(extra_mask)
                extra_mask = np.array(extra_mask)
                extra_mask = cv2.dilate(extra_mask, np.ones((5, 5), np.uint16), iterations=9) 
                dense_mask = np.logical_or(dense_mask, extra_mask)
                dense_mask = dense_mask.astype(np.float32)

            if category == "lower_body_pants" :
                extra_dense_mask = cv2.dilate(dense_mask, np.ones((5, 5), np.uint16), iterations=5)
                backgroud_mask = (dense_pose == 0).astype(np.float32)
                extra_dense_mask = np.logical_and(extra_dense_mask, np.logical_not(backgroud_mask))
                
                dense_mask = np.logical_or(dense_mask, extra_dense_mask)
                dense_mask = dense_mask.astype(np.float32)
        
        #grow the mask
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * 10 + 1, 2 * 10 + 1))
        dense_mask = cv2.dilate(dense_mask, kernel, iterations=1)

        dense_mask_img = Image.fromarray(dense_mask.astype(np.uint8) * 255)
        dense_mask_img.save("mask_new.png")

        #refine for upper_clothes
        if category == 'upper_clothes':
            mid_y = max(mid_point_left[1], mid_point_right[1])
            y_grid = np.arange(dense_mask.shape[0]).reshape(-1, 1)
            lower_half_mask = y_grid > mid_y
            lower_half_mask = np.tile(lower_half_mask, (1, dense_mask.shape[1]))
            dense_mask[lower_half_mask] = 0

    inpaint_mask = np.logical_or(inpaint_mask, dense_mask)
        
    img = np.where(inpaint_mask, 255, 0)
    dst = hole_fill(img.astype(np.uint8))

    # inpaint_mask = dst / 255 * 1
    # inpaint_mask_img = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
    # inpaint_mask_img.save("mask_inpaint_before.png")

    dst = refine_mask(dst)
    inpaint_mask = dst / 255 * 1

    inpaint_mask_img = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
    inpaint_mask_img.save("mask_inpaint.png")
        #refine for upper_clothes
    
    #keep hand, foot, head
    inpaint_mask = np.logical_and(inpaint_mask, np.logical_not(dense_fixed))

    mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
    mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)

    return mask, mask_gray, inpaint_mask

def merge_mask_image(image, mask):
    mask = mask.convert("L")
    white_image = Image.new("RGB", image.size, "white")
    inverted_mask = Image.eval(mask, lambda x: 255 - x)
    combined_image = Image.composite(image, white_image, inverted_mask)
    
    return combined_image

#get bbox from densepose
def get_bbox_from_densepose(image, densepose_array, padding=0):
    body_pixels = np.column_stack(np.where(densepose_array > 0))

    if body_pixels.size == 0:
        return None  # No body pixels found

    min_y, min_x = body_pixels.min(axis=0)
    max_y, max_x = body_pixels.max(axis=0)

    min_x = max(0, min_x - padding)
    min_y = max(0, min_y - padding)
    max_x = min(densepose_array.shape[1], max_x + padding)
    max_y = min(densepose_array.shape[0], max_y + padding)

    bbox = (min_x, min_y, max_x, max_y)

    mask = np.zeros_like(image)
    min_x, min_y, max_x, max_y = bbox
    mask[min_y:max_y, min_x:max_x, :] = 255
    masked_image = np.where(mask == 255, image, 0)
    masked_image = Image.fromarray(masked_image)
    
    return masked_image
    

#testing
import matplotlib.pyplot as plt
from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing

# from humanparsing.run_parsing import Parsing

if  __name__ == '__main__':
    device = "cuda" if torch.cuda.is_available() else "cpu" 
    openpose_model = OpenPose(0)
    openpose_model.preprocessor.body_estimation.model.to(device)
    
    model_image = Image.open('../model1.jpg').copy()
    model_image = model_image.resize((768, 1024))

    human_img_arg = _apply_exif_orientation(model_image.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    dense_pose = args.func(args,human_img_arg)   

    Image.fromarray(dense_pose[0][:,:,::-1]).resize((768,1024)).save("densepose.png")

    dense_pose = dense_pose[1]

    bbox_image = get_bbox_from_densepose(model_image.resize((384,512)), dense_pose, 15)
    bbox_image.save("zzz.png")

    #get keypoints
    keypoints = openpose_model(bbox_image)

    parsing_model = Parsing(0)
    model_parse, _ = parsing_model(model_image.resize((384,512)))
    model_parse.save("model_parse.png")

    cate = ['upper_clothes', 'lower_body_pants', 'lower_body_skirts', 'dresses', 'full_body', 'lower_body_shoes', 'lower_body_boots']
    # cate = ['lower_body_pants']
    for category in cate:
        mask, mask_gray, mask_arr = get_mask_location_new(category, model_parse, keypoints, width=384, height=512, dense_pose = dense_pose)
        mask.resize((768, 1024)).save(f"mask_{category}.png")

        model_image = model_image.resize((384, 512))
        # print("kkkkkkkkk")
        # mask = Image.open("mask_fixed.png")
        model_image_end = merge_mask_image(model_image, mask)
        model_image_end.save(f"model_image_{category}.png")