File size: 1,637 Bytes
1d80146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
datasets:
- Alienmaster/SB10k
- cardiffnlp/tweet_sentiment_multilingual
- legacy-datasets/wikipedia
- community-datasets/gnad10
language:
- de
base_model: dbmdz/bert-base-german-uncased
pipeline_tag: text-classification
---

## Tweet Style Classifier (German)


This model is a fine-tuned bert-base-uncased on a binary classification task to determine whether a German text is a tweet or not. 

The dataset contained about 20K instances, with a 50/50 distribution between the two classes. It was shuffled with a random seed of 42 and split into 80/20 for training/testing.
The NVIDIA RTX A6000 GPU was used for training three epochs with a batch size of 8. Other hyperparameters were default values from the HuggingFace Trainer.

The model was trained in order to evaluate a text style transfer task, converting formal-language texts to tweets. 

### How to use

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline

model_name = "rabuahmad/tweet-style-classifier-de"

model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)

classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, truncation=True, max_length=512)

text = "Gestern war ein schöner Tag!"

result = classifier(text)

```
Label 1 indicates that the text is predicted to be a tweet. 

### Evaluation 

Evaluation results on the test set: 

| Metric   |Score      |
|----------|-----------|
| Accuracy | 0.99988   |
| Precision| 0.99901   |
| Recall   | 0.99901   |
| F1       | 0.99901   |