{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f895ff5dbc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684412919198804661, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq6FL2b5Yu8Fg3vOzOUSzzZA/o9cKAmvQAAgD8AAIA/zRwlu6HzDD6hxLg9aXZcvobHaDyq5b89AAAAAAAAAAC6UAm+/EMBPwQPDT5AKm++FCfavNsSnT0AAAAAAAAAADPDA72svMA+MijAPVMrlr4P9ta8zoq0PAAAAAAAAAAAAADgvXv6lrqVFN26UatgtcztxbpOdv05AACAPwAAAACmua+9ET6EP2FVl70vfZq+bFC8vTc/S70AAAAAAAAAAGa1jzz29HS6xm0OuBr6+bLwy8S6YngmNwAAgD8AAIA/2lT7vczpAz+K8f89gW2Ivvq79LpwoUS9AAAAAAAAAAAANC08VIGLvLuSqLqcMJ48jFP4PUU7fL0AAIA/AACAPy6Kj76jsdE+aeyYPn4Mib4HjsC9WPueOwAAAAAAAAAAwAm0PcP1Xbq+6Os6vJqgNbXLCDsWlQm6AACAPwAAAADzRIc9HKqVPwKJ0bytbyK+JMrpPaaqVb0AAAAAAAAAAJrT0zy11R0+6swXPveiyL2kgpU8h8iIuwAAAAAAAAAA8v6GvsB4Qz9t2Bm8jze4vqqfxb2MesE9AAAAAAAAAACz4+A9poKcPzqxwr0mHnu+62C4PDaYiLwAAAAAAAAAADPsP76VrYU/ReyFvtb/wL7frli+mPVzPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHSHSOR1YCMAWyUTb4BjAF0lEdAk0oqVUuL8HV9lChoBkdAcDzqNZNfxGgHTacDaAhHQJNMMVSGahJ1fZQoaAZHQHJpXVG0/npoB00zAWgIR0CTUq1ejVQRdX2UKGgGR0Bnrky+HrQgaAdN6ANoCEdAk1SncYZVGXV9lChoBkdAcg3iiqQzUWgHTS0CaAhHQJNVigYgq3F1fZQoaAZHQHC4zI/7iyZoB03EAmgIR0CTV6DDjzZpdX2UKGgGR0BwBXH7xd6caAdNvgJoCEdAk1lgj2SMcnV9lChoBkdAWRz+tKZlWmgHTegDaAhHQJNaQ9bHIZJ1fZQoaAZHQGV/OBDohZBoB03oA2gIR0CTXMrpqynldX2UKGgGR0Bx/Ll7tzCDaAdN/QJoCEdAk15DhcZ9/nV9lChoBkdAcMrRFZxJd2gHTawCaAhHQJNepAnlXBB1fZQoaAZHQGHDjpC8e0ZoB03oA2gIR0CTX2uloDgZdX2UKGgGR0BvkSAUcn3MaAdN+wFoCEdAk2G0xASnL3V9lChoBkdAcBvehwl0HWgHTUUCaAhHQJNk2PU8V591fZQoaAZHQHBlTz/ZM+NoB02FAmgIR0CTaAeg+QlsdX2UKGgGR0BvJxm03Ov/aAdNYwFoCEdAk28AmZ3LWHV9lChoBkdAZAH/smfGuWgHTegDaAhHQJN9BOh0yQB1fZQoaAZHQHBRzQRf4RFoB03yAWgIR0CTf8JeE7GOdX2UKGgGR0BwmbTXrdFfaAdNuAJoCEdAk4EH2h7E53V9lChoBkdAbo7SmZVn3GgHTVwDaAhHQJOBVQEZBLR1fZQoaAZHQG3Xbm+0w8JoB03CAWgIR0CThICjUNKAdX2UKGgGR0BfpNhRZU1iaAdN6ANoCEdAk5fsGLUCrHV9lChoBkdAcZZOs1baAWgHTY4CaAhHQJOZUfHPu5V1fZQoaAZHQHB0k2Hck+poB018A2gIR0CTm/X8O09hdX2UKGgGR0Bs6+pMpPRBaAdN6AJoCEdAk52C83++/XV9lChoBkdAcEzuh9LHuWgHTeUBaAhHQJOeI88s+V11fZQoaAZHQG3F6fjCHh1oB01/AmgIR0CTnqvddmg8dX2UKGgGR0BhEV3Sro4daAdN6ANoCEdAk6YiYCyQgnV9lChoBkdAbTTAZbY9PmgHTaoDaAhHQJOndqoIfKZ1fZQoaAZHQGqp1KPGQ0ZoB03VA2gIR0CTqYqptJnQdX2UKGgGR0Bxtn1DjR2KaAdNnwFoCEdAk6tz4Hoou3V9lChoBkdAbtmNFSbYsmgHTccBaAhHQJOvDZTQ3P11fZQoaAZHQF4wNd7fHghoB03oA2gIR0CTr1IoE0SAdX2UKGgGR0A4aM23rleXaAdNHgFoCEdAk6+uNtIkJXV9lChoBkdAclHQL/jsEGgHTTkBaAhHQJOxie9SMtN1fZQoaAZHQGIljhtLteFoB03oA2gIR0CTseQjD8+BdX2UKGgGR0Bt6Z2+wkgPaAdNWAFoCEdAk7OF6eGwinV9lChoBkdAbsEEgW8AaWgHTecBaAhHQJOzkBJZnth1fZQoaAZHQGw4f6oESuhoB03NAWgIR0CTtDonrpqzdX2UKGgGR0BsZo+lj3EiaAdNtgFoCEdAk7W4Nd7fHnV9lChoBkdAb4GYTj/+9GgHTQYDaAhHQJO6pJiAlOZ1fZQoaAZHQHAIT8cdYGNoB01sAWgIR0CTvPDoQnQZdX2UKGgGR0BuoqYeDFqBaAdNMQFoCEdAk71O9FnZkHV9lChoBkdAcapQ4jrzG2gHTcYBaAhHQJO9tNucc2l1fZQoaAZHQHFBlwgkkbBoB02qAWgIR0CTvqNYKYzBdX2UKGgGR0BuegPK+zt1aAdNIQNoCEdAk78bV4HHFXV9lChoBkdAcEiEroW56WgHTecCaAhHQJPCVtpEhJR1fZQoaAZHQHFCn752yLRoB01EAWgIR0CTw2bFS88LdX2UKGgGR0BrXzgEU0vXaAdNVAFoCEdAk8Nma+evp3V9lChoBkdAcnMGoJiRXGgHTYMBaAhHQJPDqWeHzpZ1fZQoaAZHQGvsCYLLIPtoB03nAWgIR0CTxmZV4oqkdX2UKGgGR0BxHnH5rP+oaAdNHgJoCEdAk809jPOY6XV9lChoBkdAbDLDx9XtB2gHTXYCaAhHQJPNgf6oESx1fZQoaAZHQHCnI4Qz1sdoB01MAWgIR0CT5MEdvKlpdX2UKGgGR0Bw+rp5eJHiaAdNnAFoCEdAk+Txfa6BiHV9lChoBkdAchv7TUiIL2gHTXcBaAhHQJPlSqrBCUp1fZQoaAZHQHFkJpWV/tpoB00dA2gIR0CT5VYMfA9FdX2UKGgGR0Bup3dO6/ZeaAdNfwJoCEdAk+Y04aP0ZnV9lChoBkdAcQU6IFeOXGgHTTYCaAhHQJPmvXXiBGx1fZQoaAZHQGzK8yFfzBhoB01xAWgIR0CT5uCbc45tdX2UKGgGR0Bu5zcO9WZJaAdNkQFoCEdAk+cAyZa3Z3V9lChoBkdAcB8aFEiMYWgHTTQBaAhHQJPn/ugHu7Z1fZQoaAZHQGukUYKpkwxoB01HAWgIR0CT6G6eXiR5dX2UKGgGR0BysOSU1Q67aAdNFAFoCEdAk+kOglF+eHV9lChoBkdAbfjRhttQ9GgHTY0BaAhHQJPqtky1uzh1fZQoaAZHQHBwmseXAuZoB03YAWgIR0CT7KZ5zHS4dX2UKGgGR0Bxv+wpvxYraAdNegJoCEdAk+8NPci4a3V9lChoBkdARyjGNrCWNWgHS9BoCEdAk/EG4y44InV9lChoBkdAcE+1ZDArQWgHTXIBaAhHQJPx2fBeok11fZQoaAZHQHDZzrZ8KHBoB01LAWgIR0CT8gkrf+CLdX2UKGgGR0BzDOx9oexOaAdNKwFoCEdAk/JlIEr5I3V9lChoBkdAcHQxhUipvWgHTUYBaAhHQJPyshKUVzp1fZQoaAZHQHDJIjGDL8toB01iAWgIR0CT8rMtbs4UdX2UKGgGR0BwayxfOUt7aAdNdgFoCEdAk/NReTmnwXV9lChoBkdAcgegRK6FumgHTVoBaAhHQJP0BA0Kqn51fZQoaAZHQHH4k2UB4lhoB01SAWgIR0CT9WEZBLPEdX2UKGgGR0BCMYsmOU+taAdNJAFoCEdAk/ZPJNj9XXV9lChoBkdAbo2zrNW2gGgHTaABaAhHQJP2guh9LHx1fZQoaAZHQG+8ZZbILgJoB02AAWgIR0CT9qXhfjS5dX2UKGgGR0Bvy+jASFoMaAdN0AFoCEdAk/b3im2srHV9lChoBkdAcWxmICU5dWgHTS4CaAhHQJP4lx5s0pF1fZQoaAZHQHGwLtZ3cHpoB01JAWgIR0CT+RntfG+9dX2UKGgGR0BL4tCzC1qnaAdL7GgIR0CT+qNbTtsvdX2UKGgGR0By/FPJq7AdaAdNPgFoCEdAk/xQo1DSgHV9lChoBkdAQj/Ye1a4c2gHS+JoCEdAk/0cC9ytFXV9lChoBkdAclF8b70nPWgHTT8BaAhHQJP9lZcLSeB1fZQoaAZHQGzZfb0voNdoB01MAWgIR0CT/mrj5sTGdX2UKGgGR0BvyGqcVgx8aAdNNQFoCEdAk/7zDjzZpXV9lChoBkdAbmRLHMlkY2gHTXABaAhHQJP/D5ULlV91fZQoaAZHQGtRI2OyVwBoB02eAWgIR0CUAPf/FR51dX2UKGgGR0BtV1bmlqJuaAdNQgFoCEdAlAIG38XN1XV9lChoBkdAcLzqwhW5pmgHTSACaAhHQJQDj1M/QjV1fZQoaAZHQHIa1MRHww1oB010AWgIR0CUBDpbUwztdX2UKGgGR0BxO1+G47RwaAdNzwFoCEdAlARHZK3/gnV9lChoBkdAOqyjDbah6GgHTSQBaAhHQJQGIZqEeyR1fZQoaAZHQHDj9e2NNrVoB03IAWgIR0CUBzjd56dEdX2UKGgGR0AnK/FirksCaAdNGgFoCEdAlAeZccENfHV9lChoBkdAcGtLR8c+7mgHTY0BaAhHQJQIg5zYEnt1fZQoaAZHQG0JgTIvJzVoB00cAWgIR0CUCPyRSxZ/dX2UKGgGR0BxDqFh5PdmaAdNqgFoCEdAlAkfoq0+knVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}