Add SetFit model
Browse files- 1_Pooling/config.json +7 -0
- README.md +896 -0
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +6 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,896 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: Dadon Hotel
|
12 |
+
- text: Joyi Homeo Hall
|
13 |
+
- text: Masum Egg Supplier
|
14 |
+
- text: Salam Automobiles
|
15 |
+
- text: Shoumik Enterprise
|
16 |
+
pipeline_tag: text-classification
|
17 |
+
inference: true
|
18 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.57
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 19 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:----------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| Utility | <ul><li>'Pole No 198'</li><li>'Mirpur 12/A Harun Mollah Eidgah Math Water Pump'</li><li>'Pole No 44'</li></ul> |
|
66 |
+
| Education | <ul><li>'Jamirs Care'</li><li>'Institute Of Marine Technology Chandpur'</li><li>'Nobo Digonto Coaching Center'</li></ul> |
|
67 |
+
| Office | <ul><li>'Media And Multimedia'</li><li>'Ataur Rahman Atiq Lawfarm'</li><li>'Kemiko Pharmaceutical Limited'</li></ul> |
|
68 |
+
| Commercial | <ul><li>'Lakshmipur Police Line Shopping Mall'</li><li>'Bolaka Building'</li><li>'Vegetables Market'</li></ul> |
|
69 |
+
| Industry | <ul><li>'Haque Food Industries Limited'</li><li>'Agig Poultry Firm'</li><li>'Regular Washing Plant'</li></ul> |
|
70 |
+
| Healthcare | <ul><li>'Utsob Homeo Hall'</li><li>'Homeo Biochemic Chikitsa Kendro'</li><li>'Ananta Homeo Clinic'</li></ul> |
|
71 |
+
| Residential | <ul><li>'Hotel City Garden'</li><li>'Kasmi Bhaban'</li><li>'AR Tower'</li></ul> |
|
72 |
+
| Government | <ul><li>'Cyclone Preparedness Program Ministry of Disaster Management and Relief'</li><li>'Fire Service And Civil Defense'</li><li>'Sherpur Bwdb'</li></ul> |
|
73 |
+
| Hotel | <ul><li>'China Inn Limited'</li><li>'Hotel Salimar International'</li><li>'Hotel Grand Surma'</li></ul> |
|
74 |
+
| Religious Place | <ul><li>'Soudagor Tola Hazrat Gorom Dhawan (R.) Jame Masjid'</li><li>'Shah Makhdum (R:) Masjid'</li><li>'Mahiganj Central Graveyard'</li></ul> |
|
75 |
+
| Food | <ul><li>'Takwaya Biryani House'</li><li>'Jilapi Ghor'</li><li>'Sad Biryani House'</li></ul> |
|
76 |
+
| Fuel | <ul><li>'A N Enterprise'</li><li>'Sabbir Fuel Station'</li><li>'Trade Consortium'</li></ul> |
|
77 |
+
| Agricultural | <ul><li>'Vasha Sainik Samir Ahmed Bohumukhi Khamar'</li><li>'Tanzila Nursery'</li><li>'Insaf Agro'</li></ul> |
|
78 |
+
| Construction | <ul><li>'Bohurupa Enterprise'</li><li>'M/S Jamiya Steel House'</li><li>'Nure Madina Timber And Saw Mill'</li></ul> |
|
79 |
+
| Recreation | <ul><li>'Bijoygatha Community Center'</li><li>'Shahid Doctor Fazle Rabbi Park'</li><li>'Kalabagan Staff Quarter Field'</li></ul> |
|
80 |
+
| Shop | <ul><li>'Tawfiq Confectionery & Varieties 2'</li><li>'Tammi store'</li><li>'Shah Jalal Timber Merchant & Sawmill'</li></ul> |
|
81 |
+
| Transportation | <ul><li>'Sagorika Paribahan'</li><li>'Bismillah Ahmed Transport Agency'</li><li>'Medda Bus Stand'</li></ul> |
|
82 |
+
| Bank | <ul><li>'United Commercial Bank Jatrabari (UCB)'</li><li>'Union Bank Limited Dewan Bazar Branch'</li><li>'Janata Bank Badda'</li></ul> |
|
83 |
+
| Landmark | <ul><li>'Dilkhola Moar'</li><li>'Gouripur Motlob Road Moar'</li><li>'Bot Chattar'</li></ul> |
|
84 |
+
|
85 |
+
## Evaluation
|
86 |
+
|
87 |
+
### Metrics
|
88 |
+
| Label | Accuracy |
|
89 |
+
|:--------|:---------|
|
90 |
+
| **all** | 0.57 |
|
91 |
+
|
92 |
+
## Uses
|
93 |
+
|
94 |
+
### Direct Use for Inference
|
95 |
+
|
96 |
+
First install the SetFit library:
|
97 |
+
|
98 |
+
```bash
|
99 |
+
pip install setfit
|
100 |
+
```
|
101 |
+
|
102 |
+
Then you can load this model and run inference.
|
103 |
+
|
104 |
+
```python
|
105 |
+
from setfit import SetFitModel
|
106 |
+
|
107 |
+
# Download from the 🤗 Hub
|
108 |
+
model = SetFitModel.from_pretrained("rafi138/setfit-paraphrase-mpnet-base-v2-business-type")
|
109 |
+
# Run inference
|
110 |
+
preds = model("Dadon Hotel")
|
111 |
+
```
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Downstream Use
|
115 |
+
|
116 |
+
*List how someone could finetune this model on their own dataset.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Out-of-Scope Use
|
121 |
+
|
122 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
## Bias, Risks and Limitations
|
127 |
+
|
128 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
129 |
+
-->
|
130 |
+
|
131 |
+
<!--
|
132 |
+
### Recommendations
|
133 |
+
|
134 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
135 |
+
-->
|
136 |
+
|
137 |
+
## Training Details
|
138 |
+
|
139 |
+
### Training Set Metrics
|
140 |
+
| Training set | Min | Median | Max |
|
141 |
+
|:-------------|:----|:-------|:----|
|
142 |
+
| Word count | 1 | 3.5132 | 11 |
|
143 |
+
|
144 |
+
| Label | Training Sample Count |
|
145 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------|
|
146 |
+
| ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural | 0 |
|
147 |
+
|
148 |
+
### Training Hyperparameters
|
149 |
+
- batch_size: (16, 16)
|
150 |
+
- num_epochs: (4, 4)
|
151 |
+
- max_steps: -1
|
152 |
+
- sampling_strategy: oversampling
|
153 |
+
- body_learning_rate: (2e-05, 1e-05)
|
154 |
+
- head_learning_rate: 0.01
|
155 |
+
- loss: CosineSimilarityLoss
|
156 |
+
- distance_metric: cosine_distance
|
157 |
+
- margin: 0.25
|
158 |
+
- end_to_end: False
|
159 |
+
- use_amp: False
|
160 |
+
- warmup_proportion: 0.1
|
161 |
+
- seed: 42
|
162 |
+
- eval_max_steps: -1
|
163 |
+
- load_best_model_at_end: True
|
164 |
+
|
165 |
+
### Training Results
|
166 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
167 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
168 |
+
| 0.0001 | 1 | 0.2213 | - |
|
169 |
+
| 0.0058 | 50 | 0.253 | - |
|
170 |
+
| 0.0117 | 100 | 0.2571 | - |
|
171 |
+
| 0.0175 | 150 | 0.2189 | - |
|
172 |
+
| 0.0234 | 200 | 0.2138 | - |
|
173 |
+
| 0.0292 | 250 | 0.173 | - |
|
174 |
+
| 0.0351 | 300 | 0.2221 | - |
|
175 |
+
| 0.0409 | 350 | 0.1669 | - |
|
176 |
+
| 0.0468 | 400 | 0.1214 | - |
|
177 |
+
| 0.0526 | 450 | 0.18 | - |
|
178 |
+
| 0.0585 | 500 | 0.0983 | - |
|
179 |
+
| 0.0643 | 550 | 0.0965 | - |
|
180 |
+
| 0.0702 | 600 | 0.0819 | - |
|
181 |
+
| 0.0760 | 650 | 0.1476 | - |
|
182 |
+
| 0.0819 | 700 | 0.1289 | - |
|
183 |
+
| 0.0877 | 750 | 0.0926 | - |
|
184 |
+
| 0.0936 | 800 | 0.1395 | - |
|
185 |
+
| 0.0994 | 850 | 0.1124 | - |
|
186 |
+
| 0.1053 | 900 | 0.1089 | - |
|
187 |
+
| 0.1111 | 950 | 0.1349 | - |
|
188 |
+
| 0.1170 | 1000 | 0.0884 | - |
|
189 |
+
| 0.1228 | 1050 | 0.0559 | - |
|
190 |
+
| 0.1287 | 1100 | 0.0433 | - |
|
191 |
+
| 0.1345 | 1150 | 0.0556 | - |
|
192 |
+
| 0.1404 | 1200 | 0.081 | - |
|
193 |
+
| 0.1462 | 1250 | 0.0334 | - |
|
194 |
+
| 0.1520 | 1300 | 0.0659 | - |
|
195 |
+
| 0.1579 | 1350 | 0.0103 | - |
|
196 |
+
| 0.1637 | 1400 | 0.0638 | - |
|
197 |
+
| 0.1696 | 1450 | 0.0298 | - |
|
198 |
+
| 0.1754 | 1500 | 0.0496 | - |
|
199 |
+
| 0.1813 | 1550 | 0.0114 | - |
|
200 |
+
| 0.1871 | 1600 | 0.023 | - |
|
201 |
+
| 0.1930 | 1650 | 0.0613 | - |
|
202 |
+
| 0.1988 | 1700 | 0.0098 | - |
|
203 |
+
| 0.2047 | 1750 | 0.0141 | - |
|
204 |
+
| 0.2105 | 1800 | 0.0034 | - |
|
205 |
+
| 0.2164 | 1850 | 0.0095 | - |
|
206 |
+
| 0.2222 | 1900 | 0.005 | - |
|
207 |
+
| 0.2281 | 1950 | 0.0034 | - |
|
208 |
+
| 0.2339 | 2000 | 0.051 | - |
|
209 |
+
| 0.2398 | 2050 | 0.0038 | - |
|
210 |
+
| 0.2456 | 2100 | 0.0091 | - |
|
211 |
+
| 0.2515 | 2150 | 0.0027 | - |
|
212 |
+
| 0.2573 | 2200 | 0.003 | - |
|
213 |
+
| 0.2632 | 2250 | 0.0014 | - |
|
214 |
+
| 0.2690 | 2300 | 0.0032 | - |
|
215 |
+
| 0.2749 | 2350 | 0.0731 | - |
|
216 |
+
| 0.2807 | 2400 | 0.0025 | - |
|
217 |
+
| 0.2865 | 2450 | 0.0041 | - |
|
218 |
+
| 0.2924 | 2500 | 0.0061 | - |
|
219 |
+
| 0.2982 | 2550 | 0.0016 | - |
|
220 |
+
| 0.3041 | 2600 | 0.0027 | - |
|
221 |
+
| 0.3099 | 2650 | 0.002 | - |
|
222 |
+
| 0.3158 | 2700 | 0.0013 | - |
|
223 |
+
| 0.3216 | 2750 | 0.0155 | - |
|
224 |
+
| 0.3275 | 2800 | 0.0079 | - |
|
225 |
+
| 0.3333 | 2850 | 0.0026 | - |
|
226 |
+
| 0.3392 | 2900 | 0.001 | - |
|
227 |
+
| 0.3450 | 2950 | 0.0024 | - |
|
228 |
+
| 0.3509 | 3000 | 0.0015 | - |
|
229 |
+
| 0.3567 | 3050 | 0.0006 | - |
|
230 |
+
| 0.3626 | 3100 | 0.0072 | - |
|
231 |
+
| 0.3684 | 3150 | 0.0023 | - |
|
232 |
+
| 0.3743 | 3200 | 0.001 | - |
|
233 |
+
| 0.3801 | 3250 | 0.0011 | - |
|
234 |
+
| 0.3860 | 3300 | 0.0126 | - |
|
235 |
+
| 0.3918 | 3350 | 0.0025 | - |
|
236 |
+
| 0.3977 | 3400 | 0.0009 | - |
|
237 |
+
| 0.4035 | 3450 | 0.006 | - |
|
238 |
+
| 0.4094 | 3500 | 0.0011 | - |
|
239 |
+
| 0.4152 | 3550 | 0.001 | - |
|
240 |
+
| 0.4211 | 3600 | 0.0017 | - |
|
241 |
+
| 0.4269 | 3650 | 0.0009 | - |
|
242 |
+
| 0.4327 | 3700 | 0.0007 | - |
|
243 |
+
| 0.4386 | 3750 | 0.0006 | - |
|
244 |
+
| 0.4444 | 3800 | 0.0007 | - |
|
245 |
+
| 0.4503 | 3850 | 0.0007 | - |
|
246 |
+
| 0.4561 | 3900 | 0.0005 | - |
|
247 |
+
| 0.4620 | 3950 | 0.0006 | - |
|
248 |
+
| 0.4678 | 4000 | 0.0005 | - |
|
249 |
+
| 0.4737 | 4050 | 0.0003 | - |
|
250 |
+
| 0.4795 | 4100 | 0.0003 | - |
|
251 |
+
| 0.4854 | 4150 | 0.0003 | - |
|
252 |
+
| 0.4912 | 4200 | 0.0003 | - |
|
253 |
+
| 0.4971 | 4250 | 0.0013 | - |
|
254 |
+
| 0.5029 | 4300 | 0.0009 | - |
|
255 |
+
| 0.5088 | 4350 | 0.0003 | - |
|
256 |
+
| 0.5146 | 4400 | 0.0007 | - |
|
257 |
+
| 0.5205 | 4450 | 0.0006 | - |
|
258 |
+
| 0.5263 | 4500 | 0.0005 | - |
|
259 |
+
| 0.5322 | 4550 | 0.0005 | - |
|
260 |
+
| 0.5380 | 4600 | 0.0006 | - |
|
261 |
+
| 0.5439 | 4650 | 0.0005 | - |
|
262 |
+
| 0.5497 | 4700 | 0.0004 | - |
|
263 |
+
| 0.5556 | 4750 | 0.0004 | - |
|
264 |
+
| 0.5614 | 4800 | 0.0003 | - |
|
265 |
+
| 0.5673 | 4850 | 0.0003 | - |
|
266 |
+
| 0.5731 | 4900 | 0.0005 | - |
|
267 |
+
| 0.5789 | 4950 | 0.0005 | - |
|
268 |
+
| 0.5848 | 5000 | 0.0008 | - |
|
269 |
+
| 0.5906 | 5050 | 0.0003 | - |
|
270 |
+
| 0.5965 | 5100 | 0.0004 | - |
|
271 |
+
| 0.6023 | 5150 | 0.0003 | - |
|
272 |
+
| 0.6082 | 5200 | 0.0004 | - |
|
273 |
+
| 0.6140 | 5250 | 0.0003 | - |
|
274 |
+
| 0.6199 | 5300 | 0.0003 | - |
|
275 |
+
| 0.6257 | 5350 | 0.0004 | - |
|
276 |
+
| 0.6316 | 5400 | 0.0003 | - |
|
277 |
+
| 0.6374 | 5450 | 0.0003 | - |
|
278 |
+
| 0.6433 | 5500 | 0.0002 | - |
|
279 |
+
| 0.6491 | 5550 | 0.0003 | - |
|
280 |
+
| 0.6550 | 5600 | 0.0003 | - |
|
281 |
+
| 0.6608 | 5650 | 0.0008 | - |
|
282 |
+
| 0.6667 | 5700 | 0.0003 | - |
|
283 |
+
| 0.6725 | 5750 | 0.0004 | - |
|
284 |
+
| 0.6784 | 5800 | 0.0007 | - |
|
285 |
+
| 0.6842 | 5850 | 0.0372 | - |
|
286 |
+
| 0.6901 | 5900 | 0.0045 | - |
|
287 |
+
| 0.6959 | 5950 | 0.0041 | - |
|
288 |
+
| 0.7018 | 6000 | 0.0006 | - |
|
289 |
+
| 0.7076 | 6050 | 0.0004 | - |
|
290 |
+
| 0.7135 | 6100 | 0.0005 | - |
|
291 |
+
| 0.7193 | 6150 | 0.0003 | - |
|
292 |
+
| 0.7251 | 6200 | 0.0002 | - |
|
293 |
+
| 0.7310 | 6250 | 0.0022 | - |
|
294 |
+
| 0.7368 | 6300 | 0.0004 | - |
|
295 |
+
| 0.7427 | 6350 | 0.0003 | - |
|
296 |
+
| 0.7485 | 6400 | 0.0003 | - |
|
297 |
+
| 0.7544 | 6450 | 0.0002 | - |
|
298 |
+
| 0.7602 | 6500 | 0.0004 | - |
|
299 |
+
| 0.7661 | 6550 | 0.0006 | - |
|
300 |
+
| 0.7719 | 6600 | 0.0002 | - |
|
301 |
+
| 0.7778 | 6650 | 0.0003 | - |
|
302 |
+
| 0.7836 | 6700 | 0.0002 | - |
|
303 |
+
| 0.7895 | 6750 | 0.0002 | - |
|
304 |
+
| 0.7953 | 6800 | 0.0003 | - |
|
305 |
+
| 0.8012 | 6850 | 0.0003 | - |
|
306 |
+
| 0.8070 | 6900 | 0.0003 | - |
|
307 |
+
| 0.8129 | 6950 | 0.0007 | - |
|
308 |
+
| 0.8187 | 7000 | 0.0002 | - |
|
309 |
+
| 0.8246 | 7050 | 0.0002 | - |
|
310 |
+
| 0.8304 | 7100 | 0.0002 | - |
|
311 |
+
| 0.8363 | 7150 | 0.0002 | - |
|
312 |
+
| 0.8421 | 7200 | 0.0003 | - |
|
313 |
+
| 0.8480 | 7250 | 0.0002 | - |
|
314 |
+
| 0.8538 | 7300 | 0.0002 | - |
|
315 |
+
| 0.8596 | 7350 | 0.0002 | - |
|
316 |
+
| 0.8655 | 7400 | 0.0002 | - |
|
317 |
+
| 0.8713 | 7450 | 0.0003 | - |
|
318 |
+
| 0.8772 | 7500 | 0.0001 | - |
|
319 |
+
| 0.8830 | 7550 | 0.0001 | - |
|
320 |
+
| 0.8889 | 7600 | 0.0002 | - |
|
321 |
+
| 0.8947 | 7650 | 0.0002 | - |
|
322 |
+
| 0.9006 | 7700 | 0.0002 | - |
|
323 |
+
| 0.9064 | 7750 | 0.0002 | - |
|
324 |
+
| 0.9123 | 7800 | 0.0002 | - |
|
325 |
+
| 0.9181 | 7850 | 0.0001 | - |
|
326 |
+
| 0.9240 | 7900 | 0.0002 | - |
|
327 |
+
| 0.9298 | 7950 | 0.0001 | - |
|
328 |
+
| 0.9357 | 8000 | 0.0003 | - |
|
329 |
+
| 0.9415 | 8050 | 0.0001 | - |
|
330 |
+
| 0.9474 | 8100 | 0.0002 | - |
|
331 |
+
| 0.9532 | 8150 | 0.0001 | - |
|
332 |
+
| 0.9591 | 8200 | 0.0001 | - |
|
333 |
+
| 0.9649 | 8250 | 0.0001 | - |
|
334 |
+
| 0.9708 | 8300 | 0.0001 | - |
|
335 |
+
| 0.9766 | 8350 | 0.0002 | - |
|
336 |
+
| 0.9825 | 8400 | 0.0002 | - |
|
337 |
+
| 0.9883 | 8450 | 0.0001 | - |
|
338 |
+
| 0.9942 | 8500 | 0.0001 | - |
|
339 |
+
| 1.0 | 8550 | 0.0002 | 0.3616 |
|
340 |
+
| 1.0058 | 8600 | 0.0003 | - |
|
341 |
+
| 1.0117 | 8650 | 0.0002 | - |
|
342 |
+
| 1.0175 | 8700 | 0.0002 | - |
|
343 |
+
| 1.0234 | 8750 | 0.0002 | - |
|
344 |
+
| 1.0292 | 8800 | 0.0001 | - |
|
345 |
+
| 1.0351 | 8850 | 0.0001 | - |
|
346 |
+
| 1.0409 | 8900 | 0.0001 | - |
|
347 |
+
| 1.0468 | 8950 | 0.0002 | - |
|
348 |
+
| 1.0526 | 9000 | 0.0002 | - |
|
349 |
+
| 1.0585 | 9050 | 0.0001 | - |
|
350 |
+
| 1.0643 | 9100 | 0.0002 | - |
|
351 |
+
| 1.0702 | 9150 | 0.0002 | - |
|
352 |
+
| 1.0760 | 9200 | 0.0001 | - |
|
353 |
+
| 1.0819 | 9250 | 0.0002 | - |
|
354 |
+
| 1.0877 | 9300 | 0.0002 | - |
|
355 |
+
| 1.0936 | 9350 | 0.0002 | - |
|
356 |
+
| 1.0994 | 9400 | 0.0002 | - |
|
357 |
+
| 1.1053 | 9450 | 0.0002 | - |
|
358 |
+
| 1.1111 | 9500 | 0.0001 | - |
|
359 |
+
| 1.1170 | 9550 | 0.0001 | - |
|
360 |
+
| 1.1228 | 9600 | 0.0001 | - |
|
361 |
+
| 1.1287 | 9650 | 0.0001 | - |
|
362 |
+
| 1.1345 | 9700 | 0.0001 | - |
|
363 |
+
| 1.1404 | 9750 | 0.0002 | - |
|
364 |
+
| 1.1462 | 9800 | 0.0004 | - |
|
365 |
+
| 1.1520 | 9850 | 0.0367 | - |
|
366 |
+
| 1.1579 | 9900 | 0.0009 | - |
|
367 |
+
| 1.1637 | 9950 | 0.038 | - |
|
368 |
+
| 1.1696 | 10000 | 0.0005 | - |
|
369 |
+
| 1.1754 | 10050 | 0.0005 | - |
|
370 |
+
| 1.1813 | 10100 | 0.0004 | - |
|
371 |
+
| 1.1871 | 10150 | 0.0002 | - |
|
372 |
+
| 1.1930 | 10200 | 0.0002 | - |
|
373 |
+
| 1.1988 | 10250 | 0.0002 | - |
|
374 |
+
| 1.2047 | 10300 | 0.0002 | - |
|
375 |
+
| 1.2105 | 10350 | 0.0002 | - |
|
376 |
+
| 1.2164 | 10400 | 0.0002 | - |
|
377 |
+
| 1.2222 | 10450 | 0.0001 | - |
|
378 |
+
| 1.2281 | 10500 | 0.0003 | - |
|
379 |
+
| 1.2339 | 10550 | 0.0002 | - |
|
380 |
+
| 1.2398 | 10600 | 0.0002 | - |
|
381 |
+
| 1.2456 | 10650 | 0.0003 | - |
|
382 |
+
| 1.2515 | 10700 | 0.0002 | - |
|
383 |
+
| 1.2573 | 10750 | 0.0001 | - |
|
384 |
+
| 1.2632 | 10800 | 0.0002 | - |
|
385 |
+
| 1.2690 | 10850 | 0.0002 | - |
|
386 |
+
| 1.2749 | 10900 | 0.0002 | - |
|
387 |
+
| 1.2807 | 10950 | 0.0002 | - |
|
388 |
+
| 1.2865 | 11000 | 0.0002 | - |
|
389 |
+
| 1.2924 | 11050 | 0.0001 | - |
|
390 |
+
| 1.2982 | 11100 | 0.0002 | - |
|
391 |
+
| 1.3041 | 11150 | 0.0002 | - |
|
392 |
+
| 1.3099 | 11200 | 0.0002 | - |
|
393 |
+
| 1.3158 | 11250 | 0.0001 | - |
|
394 |
+
| 1.3216 | 11300 | 0.0001 | - |
|
395 |
+
| 1.3275 | 11350 | 0.0001 | - |
|
396 |
+
| 1.3333 | 11400 | 0.0001 | - |
|
397 |
+
| 1.3392 | 11450 | 0.0002 | - |
|
398 |
+
| 1.3450 | 11500 | 0.0002 | - |
|
399 |
+
| 1.3509 | 11550 | 0.0001 | - |
|
400 |
+
| 1.3567 | 11600 | 0.0002 | - |
|
401 |
+
| 1.3626 | 11650 | 0.0002 | - |
|
402 |
+
| 1.3684 | 11700 | 0.0001 | - |
|
403 |
+
| 1.3743 | 11750 | 0.0001 | - |
|
404 |
+
| 1.3801 | 11800 | 0.0001 | - |
|
405 |
+
| 1.3860 | 11850 | 0.0002 | - |
|
406 |
+
| 1.3918 | 11900 | 0.0001 | - |
|
407 |
+
| 1.3977 | 11950 | 0.0001 | - |
|
408 |
+
| 1.4035 | 12000 | 0.0001 | - |
|
409 |
+
| 1.4094 | 12050 | 0.0001 | - |
|
410 |
+
| 1.4152 | 12100 | 0.0001 | - |
|
411 |
+
| 1.4211 | 12150 | 0.0001 | - |
|
412 |
+
| 1.4269 | 12200 | 0.0002 | - |
|
413 |
+
| 1.4327 | 12250 | 0.0002 | - |
|
414 |
+
| 1.4386 | 12300 | 0.0001 | - |
|
415 |
+
| 1.4444 | 12350 | 0.0002 | - |
|
416 |
+
| 1.4503 | 12400 | 0.0002 | - |
|
417 |
+
| 1.4561 | 12450 | 0.0001 | - |
|
418 |
+
| 1.4620 | 12500 | 0.0001 | - |
|
419 |
+
| 1.4678 | 12550 | 0.0001 | - |
|
420 |
+
| 1.4737 | 12600 | 0.0002 | - |
|
421 |
+
| 1.4795 | 12650 | 0.0002 | - |
|
422 |
+
| 1.4854 | 12700 | 0.0001 | - |
|
423 |
+
| 1.4912 | 12750 | 0.0002 | - |
|
424 |
+
| 1.4971 | 12800 | 0.0001 | - |
|
425 |
+
| 1.5029 | 12850 | 0.0001 | - |
|
426 |
+
| 1.5088 | 12900 | 0.0001 | - |
|
427 |
+
| 1.5146 | 12950 | 0.0001 | - |
|
428 |
+
| 1.5205 | 13000 | 0.0001 | - |
|
429 |
+
| 1.5263 | 13050 | 0.0001 | - |
|
430 |
+
| 1.5322 | 13100 | 0.0001 | - |
|
431 |
+
| 1.5380 | 13150 | 0.0002 | - |
|
432 |
+
| 1.5439 | 13200 | 0.0001 | - |
|
433 |
+
| 1.5497 | 13250 | 0.0002 | - |
|
434 |
+
| 1.5556 | 13300 | 0.0002 | - |
|
435 |
+
| 1.5614 | 13350 | 0.0002 | - |
|
436 |
+
| 1.5673 | 13400 | 0.0001 | - |
|
437 |
+
| 1.5731 | 13450 | 0.0001 | - |
|
438 |
+
| 1.5789 | 13500 | 0.0002 | - |
|
439 |
+
| 1.5848 | 13550 | 0.0002 | - |
|
440 |
+
| 1.5906 | 13600 | 0.0001 | - |
|
441 |
+
| 1.5965 | 13650 | 0.0001 | - |
|
442 |
+
| 1.6023 | 13700 | 0.0002 | - |
|
443 |
+
| 1.6082 | 13750 | 0.0001 | - |
|
444 |
+
| 1.6140 | 13800 | 0.0001 | - |
|
445 |
+
| 1.6199 | 13850 | 0.0001 | - |
|
446 |
+
| 1.6257 | 13900 | 0.0001 | - |
|
447 |
+
| 1.6316 | 13950 | 0.0001 | - |
|
448 |
+
| 1.6374 | 14000 | 0.0001 | - |
|
449 |
+
| 1.6433 | 14050 | 0.0001 | - |
|
450 |
+
| 1.6491 | 14100 | 0.0002 | - |
|
451 |
+
| 1.6550 | 14150 | 0.0001 | - |
|
452 |
+
| 1.6608 | 14200 | 0.0001 | - |
|
453 |
+
| 1.6667 | 14250 | 0.0001 | - |
|
454 |
+
| 1.6725 | 14300 | 0.0001 | - |
|
455 |
+
| 1.6784 | 14350 | 0.0001 | - |
|
456 |
+
| 1.6842 | 14400 | 0.0001 | - |
|
457 |
+
| 1.6901 | 14450 | 0.0002 | - |
|
458 |
+
| 1.6959 | 14500 | 0.0001 | - |
|
459 |
+
| 1.7018 | 14550 | 0.0002 | - |
|
460 |
+
| 1.7076 | 14600 | 0.0077 | - |
|
461 |
+
| 1.7135 | 14650 | 0.0326 | - |
|
462 |
+
| 1.7193 | 14700 | 0.0001 | - |
|
463 |
+
| 1.7251 | 14750 | 0.0002 | - |
|
464 |
+
| 1.7310 | 14800 | 0.0001 | - |
|
465 |
+
| 1.7368 | 14850 | 0.0001 | - |
|
466 |
+
| 1.7427 | 14900 | 0.0002 | - |
|
467 |
+
| 1.7485 | 14950 | 0.0001 | - |
|
468 |
+
| 1.7544 | 15000 | 0.0001 | - |
|
469 |
+
| 1.7602 | 15050 | 0.0001 | - |
|
470 |
+
| 1.7661 | 15100 | 0.0001 | - |
|
471 |
+
| 1.7719 | 15150 | 0.0001 | - |
|
472 |
+
| 1.7778 | 15200 | 0.0001 | - |
|
473 |
+
| 1.7836 | 15250 | 0.0001 | - |
|
474 |
+
| 1.7895 | 15300 | 0.0002 | - |
|
475 |
+
| 1.7953 | 15350 | 0.0002 | - |
|
476 |
+
| 1.8012 | 15400 | 0.0001 | - |
|
477 |
+
| 1.8070 | 15450 | 0.0001 | - |
|
478 |
+
| 1.8129 | 15500 | 0.0002 | - |
|
479 |
+
| 1.8187 | 15550 | 0.0002 | - |
|
480 |
+
| 1.8246 | 15600 | 0.0002 | - |
|
481 |
+
| 1.8304 | 15650 | 0.0001 | - |
|
482 |
+
| 1.8363 | 15700 | 0.0001 | - |
|
483 |
+
| 1.8421 | 15750 | 0.0001 | - |
|
484 |
+
| 1.8480 | 15800 | 0.0001 | - |
|
485 |
+
| 1.8538 | 15850 | 0.0001 | - |
|
486 |
+
| 1.8596 | 15900 | 0.0001 | - |
|
487 |
+
| 1.8655 | 15950 | 0.0001 | - |
|
488 |
+
| 1.8713 | 16000 | 0.0001 | - |
|
489 |
+
| 1.8772 | 16050 | 0.0001 | - |
|
490 |
+
| 1.8830 | 16100 | 0.0001 | - |
|
491 |
+
| 1.8889 | 16150 | 0.0001 | - |
|
492 |
+
| 1.8947 | 16200 | 0.014 | - |
|
493 |
+
| 1.9006 | 16250 | 0.0109 | - |
|
494 |
+
| 1.9064 | 16300 | 0.0005 | - |
|
495 |
+
| 1.9123 | 16350 | 0.0001 | - |
|
496 |
+
| 1.9181 | 16400 | 0.0012 | - |
|
497 |
+
| 1.9240 | 16450 | 0.0016 | - |
|
498 |
+
| 1.9298 | 16500 | 0.0267 | - |
|
499 |
+
| 1.9357 | 16550 | 0.0001 | - |
|
500 |
+
| 1.9415 | 16600 | 0.0001 | - |
|
501 |
+
| 1.9474 | 16650 | 0.0001 | - |
|
502 |
+
| 1.9532 | 16700 | 0.0001 | - |
|
503 |
+
| 1.9591 | 16750 | 0.0001 | - |
|
504 |
+
| 1.9649 | 16800 | 0.0002 | - |
|
505 |
+
| 1.9708 | 16850 | 0.0001 | - |
|
506 |
+
| 1.9766 | 16900 | 0.0001 | - |
|
507 |
+
| 1.9825 | 16950 | 0.0001 | - |
|
508 |
+
| 1.9883 | 17000 | 0.0001 | - |
|
509 |
+
| 1.9942 | 17050 | 0.0001 | - |
|
510 |
+
| **2.0** | **17100** | **0.0002** | **0.35** |
|
511 |
+
| 2.0058 | 17150 | 0.0001 | - |
|
512 |
+
| 2.0117 | 17200 | 0.0001 | - |
|
513 |
+
| 2.0175 | 17250 | 0.0001 | - |
|
514 |
+
| 2.0234 | 17300 | 0.0002 | - |
|
515 |
+
| 2.0292 | 17350 | 0.0001 | - |
|
516 |
+
| 2.0351 | 17400 | 0.0001 | - |
|
517 |
+
| 2.0409 | 17450 | 0.0001 | - |
|
518 |
+
| 2.0468 | 17500 | 0.0001 | - |
|
519 |
+
| 2.0526 | 17550 | 0.0001 | - |
|
520 |
+
| 2.0585 | 17600 | 0.0002 | - |
|
521 |
+
| 2.0643 | 17650 | 0.0001 | - |
|
522 |
+
| 2.0702 | 17700 | 0.0001 | - |
|
523 |
+
| 2.0760 | 17750 | 0.0001 | - |
|
524 |
+
| 2.0819 | 17800 | 0.0001 | - |
|
525 |
+
| 2.0877 | 17850 | 0.0001 | - |
|
526 |
+
| 2.0936 | 17900 | 0.0001 | - |
|
527 |
+
| 2.0994 | 17950 | 0.0001 | - |
|
528 |
+
| 2.1053 | 18000 | 0.0001 | - |
|
529 |
+
| 2.1111 | 18050 | 0.0001 | - |
|
530 |
+
| 2.1170 | 18100 | 0.0001 | - |
|
531 |
+
| 2.1228 | 18150 | 0.0001 | - |
|
532 |
+
| 2.1287 | 18200 | 0.0001 | - |
|
533 |
+
| 2.1345 | 18250 | 0.0001 | - |
|
534 |
+
| 2.1404 | 18300 | 0.0001 | - |
|
535 |
+
| 2.1462 | 18350 | 0.0001 | - |
|
536 |
+
| 2.1520 | 18400 | 0.0001 | - |
|
537 |
+
| 2.1579 | 18450 | 0.0001 | - |
|
538 |
+
| 2.1637 | 18500 | 0.0002 | - |
|
539 |
+
| 2.1696 | 18550 | 0.0001 | - |
|
540 |
+
| 2.1754 | 18600 | 0.0001 | - |
|
541 |
+
| 2.1813 | 18650 | 0.0001 | - |
|
542 |
+
| 2.1871 | 18700 | 0.0001 | - |
|
543 |
+
| 2.1930 | 18750 | 0.0001 | - |
|
544 |
+
| 2.1988 | 18800 | 0.0001 | - |
|
545 |
+
| 2.2047 | 18850 | 0.0001 | - |
|
546 |
+
| 2.2105 | 18900 | 0.0002 | - |
|
547 |
+
| 2.2164 | 18950 | 0.0001 | - |
|
548 |
+
| 2.2222 | 19000 | 0.0001 | - |
|
549 |
+
| 2.2281 | 19050 | 0.0001 | - |
|
550 |
+
| 2.2339 | 19100 | 0.0001 | - |
|
551 |
+
| 2.2398 | 19150 | 0.0004 | - |
|
552 |
+
| 2.2456 | 19200 | 0.0001 | - |
|
553 |
+
| 2.2515 | 19250 | 0.0001 | - |
|
554 |
+
| 2.2573 | 19300 | 0.0001 | - |
|
555 |
+
| 2.2632 | 19350 | 0.0001 | - |
|
556 |
+
| 2.2690 | 19400 | 0.0001 | - |
|
557 |
+
| 2.2749 | 19450 | 0.0001 | - |
|
558 |
+
| 2.2807 | 19500 | 0.0001 | - |
|
559 |
+
| 2.2865 | 19550 | 0.0001 | - |
|
560 |
+
| 2.2924 | 19600 | 0.0001 | - |
|
561 |
+
| 2.2982 | 19650 | 0.0001 | - |
|
562 |
+
| 2.3041 | 19700 | 0.0001 | - |
|
563 |
+
| 2.3099 | 19750 | 0.0001 | - |
|
564 |
+
| 2.3158 | 19800 | 0.0001 | - |
|
565 |
+
| 2.3216 | 19850 | 0.0001 | - |
|
566 |
+
| 2.3275 | 19900 | 0.0001 | - |
|
567 |
+
| 2.3333 | 19950 | 0.0001 | - |
|
568 |
+
| 2.3392 | 20000 | 0.0001 | - |
|
569 |
+
| 2.3450 | 20050 | 0.0001 | - |
|
570 |
+
| 2.3509 | 20100 | 0.0001 | - |
|
571 |
+
| 2.3567 | 20150 | 0.0001 | - |
|
572 |
+
| 2.3626 | 20200 | 0.0001 | - |
|
573 |
+
| 2.3684 | 20250 | 0.0001 | - |
|
574 |
+
| 2.3743 | 20300 | 0.0001 | - |
|
575 |
+
| 2.3801 | 20350 | 0.0001 | - |
|
576 |
+
| 2.3860 | 20400 | 0.0001 | - |
|
577 |
+
| 2.3918 | 20450 | 0.0001 | - |
|
578 |
+
| 2.3977 | 20500 | 0.0001 | - |
|
579 |
+
| 2.4035 | 20550 | 0.0002 | - |
|
580 |
+
| 2.4094 | 20600 | 0.0002 | - |
|
581 |
+
| 2.4152 | 20650 | 0.0001 | - |
|
582 |
+
| 2.4211 | 20700 | 0.0001 | - |
|
583 |
+
| 2.4269 | 20750 | 0.0001 | - |
|
584 |
+
| 2.4327 | 20800 | 0.0002 | - |
|
585 |
+
| 2.4386 | 20850 | 0.0001 | - |
|
586 |
+
| 2.4444 | 20900 | 0.0003 | - |
|
587 |
+
| 2.4503 | 20950 | 0.0001 | - |
|
588 |
+
| 2.4561 | 21000 | 0.0001 | - |
|
589 |
+
| 2.4620 | 21050 | 0.0001 | - |
|
590 |
+
| 2.4678 | 21100 | 0.0005 | - |
|
591 |
+
| 2.4737 | 21150 | 0.0001 | - |
|
592 |
+
| 2.4795 | 21200 | 0.0001 | - |
|
593 |
+
| 2.4854 | 21250 | 0.0001 | - |
|
594 |
+
| 2.4912 | 21300 | 0.0001 | - |
|
595 |
+
| 2.4971 | 21350 | 0.0003 | - |
|
596 |
+
| 2.5029 | 21400 | 0.0001 | - |
|
597 |
+
| 2.5088 | 21450 | 0.0001 | - |
|
598 |
+
| 2.5146 | 21500 | 0.0001 | - |
|
599 |
+
| 2.5205 | 21550 | 0.0001 | - |
|
600 |
+
| 2.5263 | 21600 | 0.0001 | - |
|
601 |
+
| 2.5322 | 21650 | 0.0001 | - |
|
602 |
+
| 2.5380 | 21700 | 0.0001 | - |
|
603 |
+
| 2.5439 | 21750 | 0.0001 | - |
|
604 |
+
| 2.5497 | 21800 | 0.0001 | - |
|
605 |
+
| 2.5556 | 21850 | 0.0001 | - |
|
606 |
+
| 2.5614 | 21900 | 0.0001 | - |
|
607 |
+
| 2.5673 | 21950 | 0.0001 | - |
|
608 |
+
| 2.5731 | 22000 | 0.0001 | - |
|
609 |
+
| 2.5789 | 22050 | 0.0001 | - |
|
610 |
+
| 2.5848 | 22100 | 0.0001 | - |
|
611 |
+
| 2.5906 | 22150 | 0.0001 | - |
|
612 |
+
| 2.5965 | 22200 | 0.0001 | - |
|
613 |
+
| 2.6023 | 22250 | 0.0 | - |
|
614 |
+
| 2.6082 | 22300 | 0.0001 | - |
|
615 |
+
| 2.6140 | 22350 | 0.0001 | - |
|
616 |
+
| 2.6199 | 22400 | 0.0001 | - |
|
617 |
+
| 2.6257 | 22450 | 0.0001 | - |
|
618 |
+
| 2.6316 | 22500 | 0.0001 | - |
|
619 |
+
| 2.6374 | 22550 | 0.0001 | - |
|
620 |
+
| 2.6433 | 22600 | 0.0001 | - |
|
621 |
+
| 2.6491 | 22650 | 0.0001 | - |
|
622 |
+
| 2.6550 | 22700 | 0.0001 | - |
|
623 |
+
| 2.6608 | 22750 | 0.0001 | - |
|
624 |
+
| 2.6667 | 22800 | 0.0001 | - |
|
625 |
+
| 2.6725 | 22850 | 0.0001 | - |
|
626 |
+
| 2.6784 | 22900 | 0.0001 | - |
|
627 |
+
| 2.6842 | 22950 | 0.0001 | - |
|
628 |
+
| 2.6901 | 23000 | 0.0001 | - |
|
629 |
+
| 2.6959 | 23050 | 0.0001 | - |
|
630 |
+
| 2.7018 | 23100 | 0.0001 | - |
|
631 |
+
| 2.7076 | 23150 | 0.0001 | - |
|
632 |
+
| 2.7135 | 23200 | 0.0001 | - |
|
633 |
+
| 2.7193 | 23250 | 0.0001 | - |
|
634 |
+
| 2.7251 | 23300 | 0.0001 | - |
|
635 |
+
| 2.7310 | 23350 | 0.0001 | - |
|
636 |
+
| 2.7368 | 23400 | 0.0001 | - |
|
637 |
+
| 2.7427 | 23450 | 0.0001 | - |
|
638 |
+
| 2.7485 | 23500 | 0.0001 | - |
|
639 |
+
| 2.7544 | 23550 | 0.0001 | - |
|
640 |
+
| 2.7602 | 23600 | 0.0001 | - |
|
641 |
+
| 2.7661 | 23650 | 0.0001 | - |
|
642 |
+
| 2.7719 | 23700 | 0.0001 | - |
|
643 |
+
| 2.7778 | 23750 | 0.0001 | - |
|
644 |
+
| 2.7836 | 23800 | 0.0001 | - |
|
645 |
+
| 2.7895 | 23850 | 0.0001 | - |
|
646 |
+
| 2.7953 | 23900 | 0.0001 | - |
|
647 |
+
| 2.8012 | 23950 | 0.0001 | - |
|
648 |
+
| 2.8070 | 24000 | 0.0001 | - |
|
649 |
+
| 2.8129 | 24050 | 0.0001 | - |
|
650 |
+
| 2.8187 | 24100 | 0.0001 | - |
|
651 |
+
| 2.8246 | 24150 | 0.0001 | - |
|
652 |
+
| 2.8304 | 24200 | 0.0001 | - |
|
653 |
+
| 2.8363 | 24250 | 0.0001 | - |
|
654 |
+
| 2.8421 | 24300 | 0.0001 | - |
|
655 |
+
| 2.8480 | 24350 | 0.0002 | - |
|
656 |
+
| 2.8538 | 24400 | 0.0001 | - |
|
657 |
+
| 2.8596 | 24450 | 0.0001 | - |
|
658 |
+
| 2.8655 | 24500 | 0.0001 | - |
|
659 |
+
| 2.8713 | 24550 | 0.0001 | - |
|
660 |
+
| 2.8772 | 24600 | 0.0001 | - |
|
661 |
+
| 2.8830 | 24650 | 0.0001 | - |
|
662 |
+
| 2.8889 | 24700 | 0.0001 | - |
|
663 |
+
| 2.8947 | 24750 | 0.0001 | - |
|
664 |
+
| 2.9006 | 24800 | 0.0001 | - |
|
665 |
+
| 2.9064 | 24850 | 0.0001 | - |
|
666 |
+
| 2.9123 | 24900 | 0.0001 | - |
|
667 |
+
| 2.9181 | 24950 | 0.0001 | - |
|
668 |
+
| 2.9240 | 25000 | 0.0001 | - |
|
669 |
+
| 2.9298 | 25050 | 0.0002 | - |
|
670 |
+
| 2.9357 | 25100 | 0.0001 | - |
|
671 |
+
| 2.9415 | 25150 | 0.0001 | - |
|
672 |
+
| 2.9474 | 25200 | 0.0001 | - |
|
673 |
+
| 2.9532 | 25250 | 0.0001 | - |
|
674 |
+
| 2.9591 | 25300 | 0.0001 | - |
|
675 |
+
| 2.9649 | 25350 | 0.0001 | - |
|
676 |
+
| 2.9708 | 25400 | 0.0001 | - |
|
677 |
+
| 2.9766 | 25450 | 0.0001 | - |
|
678 |
+
| 2.9825 | 25500 | 0.0001 | - |
|
679 |
+
| 2.9883 | 25550 | 0.0001 | - |
|
680 |
+
| 2.9942 | 25600 | 0.0001 | - |
|
681 |
+
| 3.0 | 25650 | 0.0001 | 0.3812 |
|
682 |
+
| 3.0058 | 25700 | 0.0001 | - |
|
683 |
+
| 3.0117 | 25750 | 0.0001 | - |
|
684 |
+
| 3.0175 | 25800 | 0.0001 | - |
|
685 |
+
| 3.0234 | 25850 | 0.0001 | - |
|
686 |
+
| 3.0292 | 25900 | 0.0001 | - |
|
687 |
+
| 3.0351 | 25950 | 0.0001 | - |
|
688 |
+
| 3.0409 | 26000 | 0.0001 | - |
|
689 |
+
| 3.0468 | 26050 | 0.0001 | - |
|
690 |
+
| 3.0526 | 26100 | 0.0001 | - |
|
691 |
+
| 3.0585 | 26150 | 0.0001 | - |
|
692 |
+
| 3.0643 | 26200 | 0.0001 | - |
|
693 |
+
| 3.0702 | 26250 | 0.0001 | - |
|
694 |
+
| 3.0760 | 26300 | 0.0001 | - |
|
695 |
+
| 3.0819 | 26350 | 0.0001 | - |
|
696 |
+
| 3.0877 | 26400 | 0.0001 | - |
|
697 |
+
| 3.0936 | 26450 | 0.0001 | - |
|
698 |
+
| 3.0994 | 26500 | 0.0001 | - |
|
699 |
+
| 3.1053 | 26550 | 0.0001 | - |
|
700 |
+
| 3.1111 | 26600 | 0.0001 | - |
|
701 |
+
| 3.1170 | 26650 | 0.0001 | - |
|
702 |
+
| 3.1228 | 26700 | 0.0001 | - |
|
703 |
+
| 3.1287 | 26750 | 0.0001 | - |
|
704 |
+
| 3.1345 | 26800 | 0.0001 | - |
|
705 |
+
| 3.1404 | 26850 | 0.0001 | - |
|
706 |
+
| 3.1462 | 26900 | 0.0001 | - |
|
707 |
+
| 3.1520 | 26950 | 0.0001 | - |
|
708 |
+
| 3.1579 | 27000 | 0.0001 | - |
|
709 |
+
| 3.1637 | 27050 | 0.0001 | - |
|
710 |
+
| 3.1696 | 27100 | 0.0001 | - |
|
711 |
+
| 3.1754 | 27150 | 0.0001 | - |
|
712 |
+
| 3.1813 | 27200 | 0.0001 | - |
|
713 |
+
| 3.1871 | 27250 | 0.0001 | - |
|
714 |
+
| 3.1930 | 27300 | 0.0001 | - |
|
715 |
+
| 3.1988 | 27350 | 0.0001 | - |
|
716 |
+
| 3.2047 | 27400 | 0.0001 | - |
|
717 |
+
| 3.2105 | 27450 | 0.0001 | - |
|
718 |
+
| 3.2164 | 27500 | 0.0001 | - |
|
719 |
+
| 3.2222 | 27550 | 0.0001 | - |
|
720 |
+
| 3.2281 | 27600 | 0.0001 | - |
|
721 |
+
| 3.2339 | 27650 | 0.0001 | - |
|
722 |
+
| 3.2398 | 27700 | 0.0001 | - |
|
723 |
+
| 3.2456 | 27750 | 0.0001 | - |
|
724 |
+
| 3.2515 | 27800 | 0.0001 | - |
|
725 |
+
| 3.2573 | 27850 | 0.0001 | - |
|
726 |
+
| 3.2632 | 27900 | 0.0001 | - |
|
727 |
+
| 3.2690 | 27950 | 0.0001 | - |
|
728 |
+
| 3.2749 | 28000 | 0.0001 | - |
|
729 |
+
| 3.2807 | 28050 | 0.0001 | - |
|
730 |
+
| 3.2865 | 28100 | 0.0001 | - |
|
731 |
+
| 3.2924 | 28150 | 0.0001 | - |
|
732 |
+
| 3.2982 | 28200 | 0.0001 | - |
|
733 |
+
| 3.3041 | 28250 | 0.0001 | - |
|
734 |
+
| 3.3099 | 28300 | 0.0001 | - |
|
735 |
+
| 3.3158 | 28350 | 0.0001 | - |
|
736 |
+
| 3.3216 | 28400 | 0.0001 | - |
|
737 |
+
| 3.3275 | 28450 | 0.0 | - |
|
738 |
+
| 3.3333 | 28500 | 0.0001 | - |
|
739 |
+
| 3.3392 | 28550 | 0.0001 | - |
|
740 |
+
| 3.3450 | 28600 | 0.0001 | - |
|
741 |
+
| 3.3509 | 28650 | 0.0001 | - |
|
742 |
+
| 3.3567 | 28700 | 0.0001 | - |
|
743 |
+
| 3.3626 | 28750 | 0.0001 | - |
|
744 |
+
| 3.3684 | 28800 | 0.0001 | - |
|
745 |
+
| 3.3743 | 28850 | 0.0001 | - |
|
746 |
+
| 3.3801 | 28900 | 0.0001 | - |
|
747 |
+
| 3.3860 | 28950 | 0.0001 | - |
|
748 |
+
| 3.3918 | 29000 | 0.0001 | - |
|
749 |
+
| 3.3977 | 29050 | 0.0001 | - |
|
750 |
+
| 3.4035 | 29100 | 0.0001 | - |
|
751 |
+
| 3.4094 | 29150 | 0.0001 | - |
|
752 |
+
| 3.4152 | 29200 | 0.0001 | - |
|
753 |
+
| 3.4211 | 29250 | 0.0001 | - |
|
754 |
+
| 3.4269 | 29300 | 0.0001 | - |
|
755 |
+
| 3.4327 | 29350 | 0.0001 | - |
|
756 |
+
| 3.4386 | 29400 | 0.0001 | - |
|
757 |
+
| 3.4444 | 29450 | 0.0001 | - |
|
758 |
+
| 3.4503 | 29500 | 0.0001 | - |
|
759 |
+
| 3.4561 | 29550 | 0.0001 | - |
|
760 |
+
| 3.4620 | 29600 | 0.0001 | - |
|
761 |
+
| 3.4678 | 29650 | 0.0001 | - |
|
762 |
+
| 3.4737 | 29700 | 0.0001 | - |
|
763 |
+
| 3.4795 | 29750 | 0.0001 | - |
|
764 |
+
| 3.4854 | 29800 | 0.0001 | - |
|
765 |
+
| 3.4912 | 29850 | 0.0001 | - |
|
766 |
+
| 3.4971 | 29900 | 0.0001 | - |
|
767 |
+
| 3.5029 | 29950 | 0.0001 | - |
|
768 |
+
| 3.5088 | 30000 | 0.0001 | - |
|
769 |
+
| 3.5146 | 30050 | 0.0001 | - |
|
770 |
+
| 3.5205 | 30100 | 0.0001 | - |
|
771 |
+
| 3.5263 | 30150 | 0.0001 | - |
|
772 |
+
| 3.5322 | 30200 | 0.0001 | - |
|
773 |
+
| 3.5380 | 30250 | 0.0001 | - |
|
774 |
+
| 3.5439 | 30300 | 0.0001 | - |
|
775 |
+
| 3.5497 | 30350 | 0.0001 | - |
|
776 |
+
| 3.5556 | 30400 | 0.0001 | - |
|
777 |
+
| 3.5614 | 30450 | 0.0001 | - |
|
778 |
+
| 3.5673 | 30500 | 0.0001 | - |
|
779 |
+
| 3.5731 | 30550 | 0.0001 | - |
|
780 |
+
| 3.5789 | 30600 | 0.0001 | - |
|
781 |
+
| 3.5848 | 30650 | 0.0001 | - |
|
782 |
+
| 3.5906 | 30700 | 0.0001 | - |
|
783 |
+
| 3.5965 | 30750 | 0.0001 | - |
|
784 |
+
| 3.6023 | 30800 | 0.0001 | - |
|
785 |
+
| 3.6082 | 30850 | 0.0001 | - |
|
786 |
+
| 3.6140 | 30900 | 0.0001 | - |
|
787 |
+
| 3.6199 | 30950 | 0.0001 | - |
|
788 |
+
| 3.6257 | 31000 | 0.0001 | - |
|
789 |
+
| 3.6316 | 31050 | 0.0001 | - |
|
790 |
+
| 3.6374 | 31100 | 0.0001 | - |
|
791 |
+
| 3.6433 | 31150 | 0.0001 | - |
|
792 |
+
| 3.6491 | 31200 | 0.0001 | - |
|
793 |
+
| 3.6550 | 31250 | 0.0001 | - |
|
794 |
+
| 3.6608 | 31300 | 0.0001 | - |
|
795 |
+
| 3.6667 | 31350 | 0.0001 | - |
|
796 |
+
| 3.6725 | 31400 | 0.0001 | - |
|
797 |
+
| 3.6784 | 31450 | 0.0001 | - |
|
798 |
+
| 3.6842 | 31500 | 0.0001 | - |
|
799 |
+
| 3.6901 | 31550 | 0.0001 | - |
|
800 |
+
| 3.6959 | 31600 | 0.0001 | - |
|
801 |
+
| 3.7018 | 31650 | 0.0 | - |
|
802 |
+
| 3.7076 | 31700 | 0.0001 | - |
|
803 |
+
| 3.7135 | 31750 | 0.0001 | - |
|
804 |
+
| 3.7193 | 31800 | 0.0001 | - |
|
805 |
+
| 3.7251 | 31850 | 0.0001 | - |
|
806 |
+
| 3.7310 | 31900 | 0.0001 | - |
|
807 |
+
| 3.7368 | 31950 | 0.0001 | - |
|
808 |
+
| 3.7427 | 32000 | 0.0001 | - |
|
809 |
+
| 3.7485 | 32050 | 0.0001 | - |
|
810 |
+
| 3.7544 | 32100 | 0.0001 | - |
|
811 |
+
| 3.7602 | 32150 | 0.0001 | - |
|
812 |
+
| 3.7661 | 32200 | 0.0001 | - |
|
813 |
+
| 3.7719 | 32250 | 0.0001 | - |
|
814 |
+
| 3.7778 | 32300 | 0.0001 | - |
|
815 |
+
| 3.7836 | 32350 | 0.0001 | - |
|
816 |
+
| 3.7895 | 32400 | 0.0001 | - |
|
817 |
+
| 3.7953 | 32450 | 0.0001 | - |
|
818 |
+
| 3.8012 | 32500 | 0.0001 | - |
|
819 |
+
| 3.8070 | 32550 | 0.0001 | - |
|
820 |
+
| 3.8129 | 32600 | 0.0001 | - |
|
821 |
+
| 3.8187 | 32650 | 0.0001 | - |
|
822 |
+
| 3.8246 | 32700 | 0.0001 | - |
|
823 |
+
| 3.8304 | 32750 | 0.0001 | - |
|
824 |
+
| 3.8363 | 32800 | 0.0001 | - |
|
825 |
+
| 3.8421 | 32850 | 0.0001 | - |
|
826 |
+
| 3.8480 | 32900 | 0.0001 | - |
|
827 |
+
| 3.8538 | 32950 | 0.0001 | - |
|
828 |
+
| 3.8596 | 33000 | 0.0001 | - |
|
829 |
+
| 3.8655 | 33050 | 0.0001 | - |
|
830 |
+
| 3.8713 | 33100 | 0.0001 | - |
|
831 |
+
| 3.8772 | 33150 | 0.0001 | - |
|
832 |
+
| 3.8830 | 33200 | 0.0001 | - |
|
833 |
+
| 3.8889 | 33250 | 0.0001 | - |
|
834 |
+
| 3.8947 | 33300 | 0.0001 | - |
|
835 |
+
| 3.9006 | 33350 | 0.0001 | - |
|
836 |
+
| 3.9064 | 33400 | 0.0001 | - |
|
837 |
+
| 3.9123 | 33450 | 0.0001 | - |
|
838 |
+
| 3.9181 | 33500 | 0.0001 | - |
|
839 |
+
| 3.9240 | 33550 | 0.0001 | - |
|
840 |
+
| 3.9298 | 33600 | 0.0001 | - |
|
841 |
+
| 3.9357 | 33650 | 0.0001 | - |
|
842 |
+
| 3.9415 | 33700 | 0.0001 | - |
|
843 |
+
| 3.9474 | 33750 | 0.0001 | - |
|
844 |
+
| 3.9532 | 33800 | 0.0001 | - |
|
845 |
+
| 3.9591 | 33850 | 0.0001 | - |
|
846 |
+
| 3.9649 | 33900 | 0.0001 | - |
|
847 |
+
| 3.9708 | 33950 | 0.0001 | - |
|
848 |
+
| 3.9766 | 34000 | 0.0 | - |
|
849 |
+
| 3.9825 | 34050 | 0.0001 | - |
|
850 |
+
| 3.9883 | 34100 | 0.0001 | - |
|
851 |
+
| 3.9942 | 34150 | 0.0001 | - |
|
852 |
+
| 4.0 | 34200 | 0.0001 | 0.3694 |
|
853 |
+
|
854 |
+
* The bold row denotes the saved checkpoint.
|
855 |
+
### Framework Versions
|
856 |
+
- Python: 3.10.12
|
857 |
+
- SetFit: 1.0.3
|
858 |
+
- Sentence Transformers: 2.2.2
|
859 |
+
- Transformers: 4.36.2
|
860 |
+
- PyTorch: 2.1.2+cu121
|
861 |
+
- Datasets: 2.16.1
|
862 |
+
- Tokenizers: 0.15.0
|
863 |
+
|
864 |
+
## Citation
|
865 |
+
|
866 |
+
### BibTeX
|
867 |
+
```bibtex
|
868 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
869 |
+
doi = {10.48550/ARXIV.2209.11055},
|
870 |
+
url = {https://arxiv.org/abs/2209.11055},
|
871 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
872 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
873 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
874 |
+
publisher = {arXiv},
|
875 |
+
year = {2022},
|
876 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
877 |
+
}
|
878 |
+
```
|
879 |
+
|
880 |
+
<!--
|
881 |
+
## Glossary
|
882 |
+
|
883 |
+
*Clearly define terms in order to be accessible across audiences.*
|
884 |
+
-->
|
885 |
+
|
886 |
+
<!--
|
887 |
+
## Model Card Authors
|
888 |
+
|
889 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
890 |
+
-->
|
891 |
+
|
892 |
+
<!--
|
893 |
+
## Model Card Contact
|
894 |
+
|
895 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
896 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_17100/",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.36.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural"
|
4 |
+
],
|
5 |
+
"normalize_embeddings": false
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62a661c5c18c21f69cd284b7b6c699069023f5050e67e9be9bd3daef41a28dbd
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea278ca90046b1918252704a2cd30081a0947d4b2082a456e6817723b82e13b3
|
3 |
+
size 118863
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "<pad>",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "</s>",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "MPNetTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|