rafi138 commited on
Commit
904ceff
1 Parent(s): f182998

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Dadon Hotel
12
+ - text: Joyi Homeo Hall
13
+ - text: Masum Egg Supplier
14
+ - text: Salam Automobiles
15
+ - text: Shoumik Enterprise
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.57
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 19 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:----------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | Utility | <ul><li>'Pole No 198'</li><li>'Mirpur 12/A Harun Mollah Eidgah Math Water Pump'</li><li>'Pole No 44'</li></ul> |
66
+ | Education | <ul><li>'Jamirs Care'</li><li>'Institute Of Marine Technology Chandpur'</li><li>'Nobo Digonto Coaching Center'</li></ul> |
67
+ | Office | <ul><li>'Media And Multimedia'</li><li>'Ataur Rahman Atiq Lawfarm'</li><li>'Kemiko Pharmaceutical Limited'</li></ul> |
68
+ | Commercial | <ul><li>'Lakshmipur Police Line Shopping Mall'</li><li>'Bolaka Building'</li><li>'Vegetables Market'</li></ul> |
69
+ | Industry | <ul><li>'Haque Food Industries Limited'</li><li>'Agig Poultry Firm'</li><li>'Regular Washing Plant'</li></ul> |
70
+ | Healthcare | <ul><li>'Utsob Homeo Hall'</li><li>'Homeo Biochemic Chikitsa Kendro'</li><li>'Ananta Homeo Clinic'</li></ul> |
71
+ | Residential | <ul><li>'Hotel City Garden'</li><li>'Kasmi Bhaban'</li><li>'AR Tower'</li></ul> |
72
+ | Government | <ul><li>'Cyclone Preparedness Program Ministry of Disaster Management and Relief'</li><li>'Fire Service And Civil Defense'</li><li>'Sherpur Bwdb'</li></ul> |
73
+ | Hotel | <ul><li>'China Inn Limited'</li><li>'Hotel Salimar International'</li><li>'Hotel Grand Surma'</li></ul> |
74
+ | Religious Place | <ul><li>'Soudagor Tola Hazrat Gorom Dhawan (R.) Jame Masjid'</li><li>'Shah Makhdum (R:) Masjid'</li><li>'Mahiganj Central Graveyard'</li></ul> |
75
+ | Food | <ul><li>'Takwaya Biryani House'</li><li>'Jilapi Ghor'</li><li>'Sad Biryani House'</li></ul> |
76
+ | Fuel | <ul><li>'A N Enterprise'</li><li>'Sabbir Fuel Station'</li><li>'Trade Consortium'</li></ul> |
77
+ | Agricultural | <ul><li>'Vasha Sainik Samir Ahmed Bohumukhi Khamar'</li><li>'Tanzila Nursery'</li><li>'Insaf Agro'</li></ul> |
78
+ | Construction | <ul><li>'Bohurupa Enterprise'</li><li>'M/S Jamiya Steel House'</li><li>'Nure Madina Timber And Saw Mill'</li></ul> |
79
+ | Recreation | <ul><li>'Bijoygatha Community Center'</li><li>'Shahid Doctor Fazle Rabbi Park'</li><li>'Kalabagan Staff Quarter Field'</li></ul> |
80
+ | Shop | <ul><li>'Tawfiq Confectionery & Varieties 2'</li><li>'Tammi store'</li><li>'Shah Jalal Timber Merchant & Sawmill'</li></ul> |
81
+ | Transportation | <ul><li>'Sagorika Paribahan'</li><li>'Bismillah Ahmed Transport Agency'</li><li>'Medda Bus Stand'</li></ul> |
82
+ | Bank | <ul><li>'United Commercial Bank Jatrabari (UCB)'</li><li>'Union Bank Limited Dewan Bazar Branch'</li><li>'Janata Bank Badda'</li></ul> |
83
+ | Landmark | <ul><li>'Dilkhola Moar'</li><li>'Gouripur Motlob Road Moar'</li><li>'Bot Chattar'</li></ul> |
84
+
85
+ ## Evaluation
86
+
87
+ ### Metrics
88
+ | Label | Accuracy |
89
+ |:--------|:---------|
90
+ | **all** | 0.57 |
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use for Inference
95
+
96
+ First install the SetFit library:
97
+
98
+ ```bash
99
+ pip install setfit
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+
104
+ ```python
105
+ from setfit import SetFitModel
106
+
107
+ # Download from the 🤗 Hub
108
+ model = SetFitModel.from_pretrained("rafi138/setfit-paraphrase-mpnet-base-v2-business-type")
109
+ # Run inference
110
+ preds = model("Dadon Hotel")
111
+ ```
112
+
113
+ <!--
114
+ ### Downstream Use
115
+
116
+ *List how someone could finetune this model on their own dataset.*
117
+ -->
118
+
119
+ <!--
120
+ ### Out-of-Scope Use
121
+
122
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
123
+ -->
124
+
125
+ <!--
126
+ ## Bias, Risks and Limitations
127
+
128
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
129
+ -->
130
+
131
+ <!--
132
+ ### Recommendations
133
+
134
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
135
+ -->
136
+
137
+ ## Training Details
138
+
139
+ ### Training Set Metrics
140
+ | Training set | Min | Median | Max |
141
+ |:-------------|:----|:-------|:----|
142
+ | Word count | 1 | 3.5132 | 11 |
143
+
144
+ | Label | Training Sample Count |
145
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------|
146
+ | ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural | 0 |
147
+
148
+ ### Training Hyperparameters
149
+ - batch_size: (16, 16)
150
+ - num_epochs: (4, 4)
151
+ - max_steps: -1
152
+ - sampling_strategy: oversampling
153
+ - body_learning_rate: (2e-05, 1e-05)
154
+ - head_learning_rate: 0.01
155
+ - loss: CosineSimilarityLoss
156
+ - distance_metric: cosine_distance
157
+ - margin: 0.25
158
+ - end_to_end: False
159
+ - use_amp: False
160
+ - warmup_proportion: 0.1
161
+ - seed: 42
162
+ - eval_max_steps: -1
163
+ - load_best_model_at_end: True
164
+
165
+ ### Training Results
166
+ | Epoch | Step | Training Loss | Validation Loss |
167
+ |:-------:|:---------:|:-------------:|:---------------:|
168
+ | 0.0001 | 1 | 0.2213 | - |
169
+ | 0.0058 | 50 | 0.253 | - |
170
+ | 0.0117 | 100 | 0.2571 | - |
171
+ | 0.0175 | 150 | 0.2189 | - |
172
+ | 0.0234 | 200 | 0.2138 | - |
173
+ | 0.0292 | 250 | 0.173 | - |
174
+ | 0.0351 | 300 | 0.2221 | - |
175
+ | 0.0409 | 350 | 0.1669 | - |
176
+ | 0.0468 | 400 | 0.1214 | - |
177
+ | 0.0526 | 450 | 0.18 | - |
178
+ | 0.0585 | 500 | 0.0983 | - |
179
+ | 0.0643 | 550 | 0.0965 | - |
180
+ | 0.0702 | 600 | 0.0819 | - |
181
+ | 0.0760 | 650 | 0.1476 | - |
182
+ | 0.0819 | 700 | 0.1289 | - |
183
+ | 0.0877 | 750 | 0.0926 | - |
184
+ | 0.0936 | 800 | 0.1395 | - |
185
+ | 0.0994 | 850 | 0.1124 | - |
186
+ | 0.1053 | 900 | 0.1089 | - |
187
+ | 0.1111 | 950 | 0.1349 | - |
188
+ | 0.1170 | 1000 | 0.0884 | - |
189
+ | 0.1228 | 1050 | 0.0559 | - |
190
+ | 0.1287 | 1100 | 0.0433 | - |
191
+ | 0.1345 | 1150 | 0.0556 | - |
192
+ | 0.1404 | 1200 | 0.081 | - |
193
+ | 0.1462 | 1250 | 0.0334 | - |
194
+ | 0.1520 | 1300 | 0.0659 | - |
195
+ | 0.1579 | 1350 | 0.0103 | - |
196
+ | 0.1637 | 1400 | 0.0638 | - |
197
+ | 0.1696 | 1450 | 0.0298 | - |
198
+ | 0.1754 | 1500 | 0.0496 | - |
199
+ | 0.1813 | 1550 | 0.0114 | - |
200
+ | 0.1871 | 1600 | 0.023 | - |
201
+ | 0.1930 | 1650 | 0.0613 | - |
202
+ | 0.1988 | 1700 | 0.0098 | - |
203
+ | 0.2047 | 1750 | 0.0141 | - |
204
+ | 0.2105 | 1800 | 0.0034 | - |
205
+ | 0.2164 | 1850 | 0.0095 | - |
206
+ | 0.2222 | 1900 | 0.005 | - |
207
+ | 0.2281 | 1950 | 0.0034 | - |
208
+ | 0.2339 | 2000 | 0.051 | - |
209
+ | 0.2398 | 2050 | 0.0038 | - |
210
+ | 0.2456 | 2100 | 0.0091 | - |
211
+ | 0.2515 | 2150 | 0.0027 | - |
212
+ | 0.2573 | 2200 | 0.003 | - |
213
+ | 0.2632 | 2250 | 0.0014 | - |
214
+ | 0.2690 | 2300 | 0.0032 | - |
215
+ | 0.2749 | 2350 | 0.0731 | - |
216
+ | 0.2807 | 2400 | 0.0025 | - |
217
+ | 0.2865 | 2450 | 0.0041 | - |
218
+ | 0.2924 | 2500 | 0.0061 | - |
219
+ | 0.2982 | 2550 | 0.0016 | - |
220
+ | 0.3041 | 2600 | 0.0027 | - |
221
+ | 0.3099 | 2650 | 0.002 | - |
222
+ | 0.3158 | 2700 | 0.0013 | - |
223
+ | 0.3216 | 2750 | 0.0155 | - |
224
+ | 0.3275 | 2800 | 0.0079 | - |
225
+ | 0.3333 | 2850 | 0.0026 | - |
226
+ | 0.3392 | 2900 | 0.001 | - |
227
+ | 0.3450 | 2950 | 0.0024 | - |
228
+ | 0.3509 | 3000 | 0.0015 | - |
229
+ | 0.3567 | 3050 | 0.0006 | - |
230
+ | 0.3626 | 3100 | 0.0072 | - |
231
+ | 0.3684 | 3150 | 0.0023 | - |
232
+ | 0.3743 | 3200 | 0.001 | - |
233
+ | 0.3801 | 3250 | 0.0011 | - |
234
+ | 0.3860 | 3300 | 0.0126 | - |
235
+ | 0.3918 | 3350 | 0.0025 | - |
236
+ | 0.3977 | 3400 | 0.0009 | - |
237
+ | 0.4035 | 3450 | 0.006 | - |
238
+ | 0.4094 | 3500 | 0.0011 | - |
239
+ | 0.4152 | 3550 | 0.001 | - |
240
+ | 0.4211 | 3600 | 0.0017 | - |
241
+ | 0.4269 | 3650 | 0.0009 | - |
242
+ | 0.4327 | 3700 | 0.0007 | - |
243
+ | 0.4386 | 3750 | 0.0006 | - |
244
+ | 0.4444 | 3800 | 0.0007 | - |
245
+ | 0.4503 | 3850 | 0.0007 | - |
246
+ | 0.4561 | 3900 | 0.0005 | - |
247
+ | 0.4620 | 3950 | 0.0006 | - |
248
+ | 0.4678 | 4000 | 0.0005 | - |
249
+ | 0.4737 | 4050 | 0.0003 | - |
250
+ | 0.4795 | 4100 | 0.0003 | - |
251
+ | 0.4854 | 4150 | 0.0003 | - |
252
+ | 0.4912 | 4200 | 0.0003 | - |
253
+ | 0.4971 | 4250 | 0.0013 | - |
254
+ | 0.5029 | 4300 | 0.0009 | - |
255
+ | 0.5088 | 4350 | 0.0003 | - |
256
+ | 0.5146 | 4400 | 0.0007 | - |
257
+ | 0.5205 | 4450 | 0.0006 | - |
258
+ | 0.5263 | 4500 | 0.0005 | - |
259
+ | 0.5322 | 4550 | 0.0005 | - |
260
+ | 0.5380 | 4600 | 0.0006 | - |
261
+ | 0.5439 | 4650 | 0.0005 | - |
262
+ | 0.5497 | 4700 | 0.0004 | - |
263
+ | 0.5556 | 4750 | 0.0004 | - |
264
+ | 0.5614 | 4800 | 0.0003 | - |
265
+ | 0.5673 | 4850 | 0.0003 | - |
266
+ | 0.5731 | 4900 | 0.0005 | - |
267
+ | 0.5789 | 4950 | 0.0005 | - |
268
+ | 0.5848 | 5000 | 0.0008 | - |
269
+ | 0.5906 | 5050 | 0.0003 | - |
270
+ | 0.5965 | 5100 | 0.0004 | - |
271
+ | 0.6023 | 5150 | 0.0003 | - |
272
+ | 0.6082 | 5200 | 0.0004 | - |
273
+ | 0.6140 | 5250 | 0.0003 | - |
274
+ | 0.6199 | 5300 | 0.0003 | - |
275
+ | 0.6257 | 5350 | 0.0004 | - |
276
+ | 0.6316 | 5400 | 0.0003 | - |
277
+ | 0.6374 | 5450 | 0.0003 | - |
278
+ | 0.6433 | 5500 | 0.0002 | - |
279
+ | 0.6491 | 5550 | 0.0003 | - |
280
+ | 0.6550 | 5600 | 0.0003 | - |
281
+ | 0.6608 | 5650 | 0.0008 | - |
282
+ | 0.6667 | 5700 | 0.0003 | - |
283
+ | 0.6725 | 5750 | 0.0004 | - |
284
+ | 0.6784 | 5800 | 0.0007 | - |
285
+ | 0.6842 | 5850 | 0.0372 | - |
286
+ | 0.6901 | 5900 | 0.0045 | - |
287
+ | 0.6959 | 5950 | 0.0041 | - |
288
+ | 0.7018 | 6000 | 0.0006 | - |
289
+ | 0.7076 | 6050 | 0.0004 | - |
290
+ | 0.7135 | 6100 | 0.0005 | - |
291
+ | 0.7193 | 6150 | 0.0003 | - |
292
+ | 0.7251 | 6200 | 0.0002 | - |
293
+ | 0.7310 | 6250 | 0.0022 | - |
294
+ | 0.7368 | 6300 | 0.0004 | - |
295
+ | 0.7427 | 6350 | 0.0003 | - |
296
+ | 0.7485 | 6400 | 0.0003 | - |
297
+ | 0.7544 | 6450 | 0.0002 | - |
298
+ | 0.7602 | 6500 | 0.0004 | - |
299
+ | 0.7661 | 6550 | 0.0006 | - |
300
+ | 0.7719 | 6600 | 0.0002 | - |
301
+ | 0.7778 | 6650 | 0.0003 | - |
302
+ | 0.7836 | 6700 | 0.0002 | - |
303
+ | 0.7895 | 6750 | 0.0002 | - |
304
+ | 0.7953 | 6800 | 0.0003 | - |
305
+ | 0.8012 | 6850 | 0.0003 | - |
306
+ | 0.8070 | 6900 | 0.0003 | - |
307
+ | 0.8129 | 6950 | 0.0007 | - |
308
+ | 0.8187 | 7000 | 0.0002 | - |
309
+ | 0.8246 | 7050 | 0.0002 | - |
310
+ | 0.8304 | 7100 | 0.0002 | - |
311
+ | 0.8363 | 7150 | 0.0002 | - |
312
+ | 0.8421 | 7200 | 0.0003 | - |
313
+ | 0.8480 | 7250 | 0.0002 | - |
314
+ | 0.8538 | 7300 | 0.0002 | - |
315
+ | 0.8596 | 7350 | 0.0002 | - |
316
+ | 0.8655 | 7400 | 0.0002 | - |
317
+ | 0.8713 | 7450 | 0.0003 | - |
318
+ | 0.8772 | 7500 | 0.0001 | - |
319
+ | 0.8830 | 7550 | 0.0001 | - |
320
+ | 0.8889 | 7600 | 0.0002 | - |
321
+ | 0.8947 | 7650 | 0.0002 | - |
322
+ | 0.9006 | 7700 | 0.0002 | - |
323
+ | 0.9064 | 7750 | 0.0002 | - |
324
+ | 0.9123 | 7800 | 0.0002 | - |
325
+ | 0.9181 | 7850 | 0.0001 | - |
326
+ | 0.9240 | 7900 | 0.0002 | - |
327
+ | 0.9298 | 7950 | 0.0001 | - |
328
+ | 0.9357 | 8000 | 0.0003 | - |
329
+ | 0.9415 | 8050 | 0.0001 | - |
330
+ | 0.9474 | 8100 | 0.0002 | - |
331
+ | 0.9532 | 8150 | 0.0001 | - |
332
+ | 0.9591 | 8200 | 0.0001 | - |
333
+ | 0.9649 | 8250 | 0.0001 | - |
334
+ | 0.9708 | 8300 | 0.0001 | - |
335
+ | 0.9766 | 8350 | 0.0002 | - |
336
+ | 0.9825 | 8400 | 0.0002 | - |
337
+ | 0.9883 | 8450 | 0.0001 | - |
338
+ | 0.9942 | 8500 | 0.0001 | - |
339
+ | 1.0 | 8550 | 0.0002 | 0.3616 |
340
+ | 1.0058 | 8600 | 0.0003 | - |
341
+ | 1.0117 | 8650 | 0.0002 | - |
342
+ | 1.0175 | 8700 | 0.0002 | - |
343
+ | 1.0234 | 8750 | 0.0002 | - |
344
+ | 1.0292 | 8800 | 0.0001 | - |
345
+ | 1.0351 | 8850 | 0.0001 | - |
346
+ | 1.0409 | 8900 | 0.0001 | - |
347
+ | 1.0468 | 8950 | 0.0002 | - |
348
+ | 1.0526 | 9000 | 0.0002 | - |
349
+ | 1.0585 | 9050 | 0.0001 | - |
350
+ | 1.0643 | 9100 | 0.0002 | - |
351
+ | 1.0702 | 9150 | 0.0002 | - |
352
+ | 1.0760 | 9200 | 0.0001 | - |
353
+ | 1.0819 | 9250 | 0.0002 | - |
354
+ | 1.0877 | 9300 | 0.0002 | - |
355
+ | 1.0936 | 9350 | 0.0002 | - |
356
+ | 1.0994 | 9400 | 0.0002 | - |
357
+ | 1.1053 | 9450 | 0.0002 | - |
358
+ | 1.1111 | 9500 | 0.0001 | - |
359
+ | 1.1170 | 9550 | 0.0001 | - |
360
+ | 1.1228 | 9600 | 0.0001 | - |
361
+ | 1.1287 | 9650 | 0.0001 | - |
362
+ | 1.1345 | 9700 | 0.0001 | - |
363
+ | 1.1404 | 9750 | 0.0002 | - |
364
+ | 1.1462 | 9800 | 0.0004 | - |
365
+ | 1.1520 | 9850 | 0.0367 | - |
366
+ | 1.1579 | 9900 | 0.0009 | - |
367
+ | 1.1637 | 9950 | 0.038 | - |
368
+ | 1.1696 | 10000 | 0.0005 | - |
369
+ | 1.1754 | 10050 | 0.0005 | - |
370
+ | 1.1813 | 10100 | 0.0004 | - |
371
+ | 1.1871 | 10150 | 0.0002 | - |
372
+ | 1.1930 | 10200 | 0.0002 | - |
373
+ | 1.1988 | 10250 | 0.0002 | - |
374
+ | 1.2047 | 10300 | 0.0002 | - |
375
+ | 1.2105 | 10350 | 0.0002 | - |
376
+ | 1.2164 | 10400 | 0.0002 | - |
377
+ | 1.2222 | 10450 | 0.0001 | - |
378
+ | 1.2281 | 10500 | 0.0003 | - |
379
+ | 1.2339 | 10550 | 0.0002 | - |
380
+ | 1.2398 | 10600 | 0.0002 | - |
381
+ | 1.2456 | 10650 | 0.0003 | - |
382
+ | 1.2515 | 10700 | 0.0002 | - |
383
+ | 1.2573 | 10750 | 0.0001 | - |
384
+ | 1.2632 | 10800 | 0.0002 | - |
385
+ | 1.2690 | 10850 | 0.0002 | - |
386
+ | 1.2749 | 10900 | 0.0002 | - |
387
+ | 1.2807 | 10950 | 0.0002 | - |
388
+ | 1.2865 | 11000 | 0.0002 | - |
389
+ | 1.2924 | 11050 | 0.0001 | - |
390
+ | 1.2982 | 11100 | 0.0002 | - |
391
+ | 1.3041 | 11150 | 0.0002 | - |
392
+ | 1.3099 | 11200 | 0.0002 | - |
393
+ | 1.3158 | 11250 | 0.0001 | - |
394
+ | 1.3216 | 11300 | 0.0001 | - |
395
+ | 1.3275 | 11350 | 0.0001 | - |
396
+ | 1.3333 | 11400 | 0.0001 | - |
397
+ | 1.3392 | 11450 | 0.0002 | - |
398
+ | 1.3450 | 11500 | 0.0002 | - |
399
+ | 1.3509 | 11550 | 0.0001 | - |
400
+ | 1.3567 | 11600 | 0.0002 | - |
401
+ | 1.3626 | 11650 | 0.0002 | - |
402
+ | 1.3684 | 11700 | 0.0001 | - |
403
+ | 1.3743 | 11750 | 0.0001 | - |
404
+ | 1.3801 | 11800 | 0.0001 | - |
405
+ | 1.3860 | 11850 | 0.0002 | - |
406
+ | 1.3918 | 11900 | 0.0001 | - |
407
+ | 1.3977 | 11950 | 0.0001 | - |
408
+ | 1.4035 | 12000 | 0.0001 | - |
409
+ | 1.4094 | 12050 | 0.0001 | - |
410
+ | 1.4152 | 12100 | 0.0001 | - |
411
+ | 1.4211 | 12150 | 0.0001 | - |
412
+ | 1.4269 | 12200 | 0.0002 | - |
413
+ | 1.4327 | 12250 | 0.0002 | - |
414
+ | 1.4386 | 12300 | 0.0001 | - |
415
+ | 1.4444 | 12350 | 0.0002 | - |
416
+ | 1.4503 | 12400 | 0.0002 | - |
417
+ | 1.4561 | 12450 | 0.0001 | - |
418
+ | 1.4620 | 12500 | 0.0001 | - |
419
+ | 1.4678 | 12550 | 0.0001 | - |
420
+ | 1.4737 | 12600 | 0.0002 | - |
421
+ | 1.4795 | 12650 | 0.0002 | - |
422
+ | 1.4854 | 12700 | 0.0001 | - |
423
+ | 1.4912 | 12750 | 0.0002 | - |
424
+ | 1.4971 | 12800 | 0.0001 | - |
425
+ | 1.5029 | 12850 | 0.0001 | - |
426
+ | 1.5088 | 12900 | 0.0001 | - |
427
+ | 1.5146 | 12950 | 0.0001 | - |
428
+ | 1.5205 | 13000 | 0.0001 | - |
429
+ | 1.5263 | 13050 | 0.0001 | - |
430
+ | 1.5322 | 13100 | 0.0001 | - |
431
+ | 1.5380 | 13150 | 0.0002 | - |
432
+ | 1.5439 | 13200 | 0.0001 | - |
433
+ | 1.5497 | 13250 | 0.0002 | - |
434
+ | 1.5556 | 13300 | 0.0002 | - |
435
+ | 1.5614 | 13350 | 0.0002 | - |
436
+ | 1.5673 | 13400 | 0.0001 | - |
437
+ | 1.5731 | 13450 | 0.0001 | - |
438
+ | 1.5789 | 13500 | 0.0002 | - |
439
+ | 1.5848 | 13550 | 0.0002 | - |
440
+ | 1.5906 | 13600 | 0.0001 | - |
441
+ | 1.5965 | 13650 | 0.0001 | - |
442
+ | 1.6023 | 13700 | 0.0002 | - |
443
+ | 1.6082 | 13750 | 0.0001 | - |
444
+ | 1.6140 | 13800 | 0.0001 | - |
445
+ | 1.6199 | 13850 | 0.0001 | - |
446
+ | 1.6257 | 13900 | 0.0001 | - |
447
+ | 1.6316 | 13950 | 0.0001 | - |
448
+ | 1.6374 | 14000 | 0.0001 | - |
449
+ | 1.6433 | 14050 | 0.0001 | - |
450
+ | 1.6491 | 14100 | 0.0002 | - |
451
+ | 1.6550 | 14150 | 0.0001 | - |
452
+ | 1.6608 | 14200 | 0.0001 | - |
453
+ | 1.6667 | 14250 | 0.0001 | - |
454
+ | 1.6725 | 14300 | 0.0001 | - |
455
+ | 1.6784 | 14350 | 0.0001 | - |
456
+ | 1.6842 | 14400 | 0.0001 | - |
457
+ | 1.6901 | 14450 | 0.0002 | - |
458
+ | 1.6959 | 14500 | 0.0001 | - |
459
+ | 1.7018 | 14550 | 0.0002 | - |
460
+ | 1.7076 | 14600 | 0.0077 | - |
461
+ | 1.7135 | 14650 | 0.0326 | - |
462
+ | 1.7193 | 14700 | 0.0001 | - |
463
+ | 1.7251 | 14750 | 0.0002 | - |
464
+ | 1.7310 | 14800 | 0.0001 | - |
465
+ | 1.7368 | 14850 | 0.0001 | - |
466
+ | 1.7427 | 14900 | 0.0002 | - |
467
+ | 1.7485 | 14950 | 0.0001 | - |
468
+ | 1.7544 | 15000 | 0.0001 | - |
469
+ | 1.7602 | 15050 | 0.0001 | - |
470
+ | 1.7661 | 15100 | 0.0001 | - |
471
+ | 1.7719 | 15150 | 0.0001 | - |
472
+ | 1.7778 | 15200 | 0.0001 | - |
473
+ | 1.7836 | 15250 | 0.0001 | - |
474
+ | 1.7895 | 15300 | 0.0002 | - |
475
+ | 1.7953 | 15350 | 0.0002 | - |
476
+ | 1.8012 | 15400 | 0.0001 | - |
477
+ | 1.8070 | 15450 | 0.0001 | - |
478
+ | 1.8129 | 15500 | 0.0002 | - |
479
+ | 1.8187 | 15550 | 0.0002 | - |
480
+ | 1.8246 | 15600 | 0.0002 | - |
481
+ | 1.8304 | 15650 | 0.0001 | - |
482
+ | 1.8363 | 15700 | 0.0001 | - |
483
+ | 1.8421 | 15750 | 0.0001 | - |
484
+ | 1.8480 | 15800 | 0.0001 | - |
485
+ | 1.8538 | 15850 | 0.0001 | - |
486
+ | 1.8596 | 15900 | 0.0001 | - |
487
+ | 1.8655 | 15950 | 0.0001 | - |
488
+ | 1.8713 | 16000 | 0.0001 | - |
489
+ | 1.8772 | 16050 | 0.0001 | - |
490
+ | 1.8830 | 16100 | 0.0001 | - |
491
+ | 1.8889 | 16150 | 0.0001 | - |
492
+ | 1.8947 | 16200 | 0.014 | - |
493
+ | 1.9006 | 16250 | 0.0109 | - |
494
+ | 1.9064 | 16300 | 0.0005 | - |
495
+ | 1.9123 | 16350 | 0.0001 | - |
496
+ | 1.9181 | 16400 | 0.0012 | - |
497
+ | 1.9240 | 16450 | 0.0016 | - |
498
+ | 1.9298 | 16500 | 0.0267 | - |
499
+ | 1.9357 | 16550 | 0.0001 | - |
500
+ | 1.9415 | 16600 | 0.0001 | - |
501
+ | 1.9474 | 16650 | 0.0001 | - |
502
+ | 1.9532 | 16700 | 0.0001 | - |
503
+ | 1.9591 | 16750 | 0.0001 | - |
504
+ | 1.9649 | 16800 | 0.0002 | - |
505
+ | 1.9708 | 16850 | 0.0001 | - |
506
+ | 1.9766 | 16900 | 0.0001 | - |
507
+ | 1.9825 | 16950 | 0.0001 | - |
508
+ | 1.9883 | 17000 | 0.0001 | - |
509
+ | 1.9942 | 17050 | 0.0001 | - |
510
+ | **2.0** | **17100** | **0.0002** | **0.35** |
511
+ | 2.0058 | 17150 | 0.0001 | - |
512
+ | 2.0117 | 17200 | 0.0001 | - |
513
+ | 2.0175 | 17250 | 0.0001 | - |
514
+ | 2.0234 | 17300 | 0.0002 | - |
515
+ | 2.0292 | 17350 | 0.0001 | - |
516
+ | 2.0351 | 17400 | 0.0001 | - |
517
+ | 2.0409 | 17450 | 0.0001 | - |
518
+ | 2.0468 | 17500 | 0.0001 | - |
519
+ | 2.0526 | 17550 | 0.0001 | - |
520
+ | 2.0585 | 17600 | 0.0002 | - |
521
+ | 2.0643 | 17650 | 0.0001 | - |
522
+ | 2.0702 | 17700 | 0.0001 | - |
523
+ | 2.0760 | 17750 | 0.0001 | - |
524
+ | 2.0819 | 17800 | 0.0001 | - |
525
+ | 2.0877 | 17850 | 0.0001 | - |
526
+ | 2.0936 | 17900 | 0.0001 | - |
527
+ | 2.0994 | 17950 | 0.0001 | - |
528
+ | 2.1053 | 18000 | 0.0001 | - |
529
+ | 2.1111 | 18050 | 0.0001 | - |
530
+ | 2.1170 | 18100 | 0.0001 | - |
531
+ | 2.1228 | 18150 | 0.0001 | - |
532
+ | 2.1287 | 18200 | 0.0001 | - |
533
+ | 2.1345 | 18250 | 0.0001 | - |
534
+ | 2.1404 | 18300 | 0.0001 | - |
535
+ | 2.1462 | 18350 | 0.0001 | - |
536
+ | 2.1520 | 18400 | 0.0001 | - |
537
+ | 2.1579 | 18450 | 0.0001 | - |
538
+ | 2.1637 | 18500 | 0.0002 | - |
539
+ | 2.1696 | 18550 | 0.0001 | - |
540
+ | 2.1754 | 18600 | 0.0001 | - |
541
+ | 2.1813 | 18650 | 0.0001 | - |
542
+ | 2.1871 | 18700 | 0.0001 | - |
543
+ | 2.1930 | 18750 | 0.0001 | - |
544
+ | 2.1988 | 18800 | 0.0001 | - |
545
+ | 2.2047 | 18850 | 0.0001 | - |
546
+ | 2.2105 | 18900 | 0.0002 | - |
547
+ | 2.2164 | 18950 | 0.0001 | - |
548
+ | 2.2222 | 19000 | 0.0001 | - |
549
+ | 2.2281 | 19050 | 0.0001 | - |
550
+ | 2.2339 | 19100 | 0.0001 | - |
551
+ | 2.2398 | 19150 | 0.0004 | - |
552
+ | 2.2456 | 19200 | 0.0001 | - |
553
+ | 2.2515 | 19250 | 0.0001 | - |
554
+ | 2.2573 | 19300 | 0.0001 | - |
555
+ | 2.2632 | 19350 | 0.0001 | - |
556
+ | 2.2690 | 19400 | 0.0001 | - |
557
+ | 2.2749 | 19450 | 0.0001 | - |
558
+ | 2.2807 | 19500 | 0.0001 | - |
559
+ | 2.2865 | 19550 | 0.0001 | - |
560
+ | 2.2924 | 19600 | 0.0001 | - |
561
+ | 2.2982 | 19650 | 0.0001 | - |
562
+ | 2.3041 | 19700 | 0.0001 | - |
563
+ | 2.3099 | 19750 | 0.0001 | - |
564
+ | 2.3158 | 19800 | 0.0001 | - |
565
+ | 2.3216 | 19850 | 0.0001 | - |
566
+ | 2.3275 | 19900 | 0.0001 | - |
567
+ | 2.3333 | 19950 | 0.0001 | - |
568
+ | 2.3392 | 20000 | 0.0001 | - |
569
+ | 2.3450 | 20050 | 0.0001 | - |
570
+ | 2.3509 | 20100 | 0.0001 | - |
571
+ | 2.3567 | 20150 | 0.0001 | - |
572
+ | 2.3626 | 20200 | 0.0001 | - |
573
+ | 2.3684 | 20250 | 0.0001 | - |
574
+ | 2.3743 | 20300 | 0.0001 | - |
575
+ | 2.3801 | 20350 | 0.0001 | - |
576
+ | 2.3860 | 20400 | 0.0001 | - |
577
+ | 2.3918 | 20450 | 0.0001 | - |
578
+ | 2.3977 | 20500 | 0.0001 | - |
579
+ | 2.4035 | 20550 | 0.0002 | - |
580
+ | 2.4094 | 20600 | 0.0002 | - |
581
+ | 2.4152 | 20650 | 0.0001 | - |
582
+ | 2.4211 | 20700 | 0.0001 | - |
583
+ | 2.4269 | 20750 | 0.0001 | - |
584
+ | 2.4327 | 20800 | 0.0002 | - |
585
+ | 2.4386 | 20850 | 0.0001 | - |
586
+ | 2.4444 | 20900 | 0.0003 | - |
587
+ | 2.4503 | 20950 | 0.0001 | - |
588
+ | 2.4561 | 21000 | 0.0001 | - |
589
+ | 2.4620 | 21050 | 0.0001 | - |
590
+ | 2.4678 | 21100 | 0.0005 | - |
591
+ | 2.4737 | 21150 | 0.0001 | - |
592
+ | 2.4795 | 21200 | 0.0001 | - |
593
+ | 2.4854 | 21250 | 0.0001 | - |
594
+ | 2.4912 | 21300 | 0.0001 | - |
595
+ | 2.4971 | 21350 | 0.0003 | - |
596
+ | 2.5029 | 21400 | 0.0001 | - |
597
+ | 2.5088 | 21450 | 0.0001 | - |
598
+ | 2.5146 | 21500 | 0.0001 | - |
599
+ | 2.5205 | 21550 | 0.0001 | - |
600
+ | 2.5263 | 21600 | 0.0001 | - |
601
+ | 2.5322 | 21650 | 0.0001 | - |
602
+ | 2.5380 | 21700 | 0.0001 | - |
603
+ | 2.5439 | 21750 | 0.0001 | - |
604
+ | 2.5497 | 21800 | 0.0001 | - |
605
+ | 2.5556 | 21850 | 0.0001 | - |
606
+ | 2.5614 | 21900 | 0.0001 | - |
607
+ | 2.5673 | 21950 | 0.0001 | - |
608
+ | 2.5731 | 22000 | 0.0001 | - |
609
+ | 2.5789 | 22050 | 0.0001 | - |
610
+ | 2.5848 | 22100 | 0.0001 | - |
611
+ | 2.5906 | 22150 | 0.0001 | - |
612
+ | 2.5965 | 22200 | 0.0001 | - |
613
+ | 2.6023 | 22250 | 0.0 | - |
614
+ | 2.6082 | 22300 | 0.0001 | - |
615
+ | 2.6140 | 22350 | 0.0001 | - |
616
+ | 2.6199 | 22400 | 0.0001 | - |
617
+ | 2.6257 | 22450 | 0.0001 | - |
618
+ | 2.6316 | 22500 | 0.0001 | - |
619
+ | 2.6374 | 22550 | 0.0001 | - |
620
+ | 2.6433 | 22600 | 0.0001 | - |
621
+ | 2.6491 | 22650 | 0.0001 | - |
622
+ | 2.6550 | 22700 | 0.0001 | - |
623
+ | 2.6608 | 22750 | 0.0001 | - |
624
+ | 2.6667 | 22800 | 0.0001 | - |
625
+ | 2.6725 | 22850 | 0.0001 | - |
626
+ | 2.6784 | 22900 | 0.0001 | - |
627
+ | 2.6842 | 22950 | 0.0001 | - |
628
+ | 2.6901 | 23000 | 0.0001 | - |
629
+ | 2.6959 | 23050 | 0.0001 | - |
630
+ | 2.7018 | 23100 | 0.0001 | - |
631
+ | 2.7076 | 23150 | 0.0001 | - |
632
+ | 2.7135 | 23200 | 0.0001 | - |
633
+ | 2.7193 | 23250 | 0.0001 | - |
634
+ | 2.7251 | 23300 | 0.0001 | - |
635
+ | 2.7310 | 23350 | 0.0001 | - |
636
+ | 2.7368 | 23400 | 0.0001 | - |
637
+ | 2.7427 | 23450 | 0.0001 | - |
638
+ | 2.7485 | 23500 | 0.0001 | - |
639
+ | 2.7544 | 23550 | 0.0001 | - |
640
+ | 2.7602 | 23600 | 0.0001 | - |
641
+ | 2.7661 | 23650 | 0.0001 | - |
642
+ | 2.7719 | 23700 | 0.0001 | - |
643
+ | 2.7778 | 23750 | 0.0001 | - |
644
+ | 2.7836 | 23800 | 0.0001 | - |
645
+ | 2.7895 | 23850 | 0.0001 | - |
646
+ | 2.7953 | 23900 | 0.0001 | - |
647
+ | 2.8012 | 23950 | 0.0001 | - |
648
+ | 2.8070 | 24000 | 0.0001 | - |
649
+ | 2.8129 | 24050 | 0.0001 | - |
650
+ | 2.8187 | 24100 | 0.0001 | - |
651
+ | 2.8246 | 24150 | 0.0001 | - |
652
+ | 2.8304 | 24200 | 0.0001 | - |
653
+ | 2.8363 | 24250 | 0.0001 | - |
654
+ | 2.8421 | 24300 | 0.0001 | - |
655
+ | 2.8480 | 24350 | 0.0002 | - |
656
+ | 2.8538 | 24400 | 0.0001 | - |
657
+ | 2.8596 | 24450 | 0.0001 | - |
658
+ | 2.8655 | 24500 | 0.0001 | - |
659
+ | 2.8713 | 24550 | 0.0001 | - |
660
+ | 2.8772 | 24600 | 0.0001 | - |
661
+ | 2.8830 | 24650 | 0.0001 | - |
662
+ | 2.8889 | 24700 | 0.0001 | - |
663
+ | 2.8947 | 24750 | 0.0001 | - |
664
+ | 2.9006 | 24800 | 0.0001 | - |
665
+ | 2.9064 | 24850 | 0.0001 | - |
666
+ | 2.9123 | 24900 | 0.0001 | - |
667
+ | 2.9181 | 24950 | 0.0001 | - |
668
+ | 2.9240 | 25000 | 0.0001 | - |
669
+ | 2.9298 | 25050 | 0.0002 | - |
670
+ | 2.9357 | 25100 | 0.0001 | - |
671
+ | 2.9415 | 25150 | 0.0001 | - |
672
+ | 2.9474 | 25200 | 0.0001 | - |
673
+ | 2.9532 | 25250 | 0.0001 | - |
674
+ | 2.9591 | 25300 | 0.0001 | - |
675
+ | 2.9649 | 25350 | 0.0001 | - |
676
+ | 2.9708 | 25400 | 0.0001 | - |
677
+ | 2.9766 | 25450 | 0.0001 | - |
678
+ | 2.9825 | 25500 | 0.0001 | - |
679
+ | 2.9883 | 25550 | 0.0001 | - |
680
+ | 2.9942 | 25600 | 0.0001 | - |
681
+ | 3.0 | 25650 | 0.0001 | 0.3812 |
682
+ | 3.0058 | 25700 | 0.0001 | - |
683
+ | 3.0117 | 25750 | 0.0001 | - |
684
+ | 3.0175 | 25800 | 0.0001 | - |
685
+ | 3.0234 | 25850 | 0.0001 | - |
686
+ | 3.0292 | 25900 | 0.0001 | - |
687
+ | 3.0351 | 25950 | 0.0001 | - |
688
+ | 3.0409 | 26000 | 0.0001 | - |
689
+ | 3.0468 | 26050 | 0.0001 | - |
690
+ | 3.0526 | 26100 | 0.0001 | - |
691
+ | 3.0585 | 26150 | 0.0001 | - |
692
+ | 3.0643 | 26200 | 0.0001 | - |
693
+ | 3.0702 | 26250 | 0.0001 | - |
694
+ | 3.0760 | 26300 | 0.0001 | - |
695
+ | 3.0819 | 26350 | 0.0001 | - |
696
+ | 3.0877 | 26400 | 0.0001 | - |
697
+ | 3.0936 | 26450 | 0.0001 | - |
698
+ | 3.0994 | 26500 | 0.0001 | - |
699
+ | 3.1053 | 26550 | 0.0001 | - |
700
+ | 3.1111 | 26600 | 0.0001 | - |
701
+ | 3.1170 | 26650 | 0.0001 | - |
702
+ | 3.1228 | 26700 | 0.0001 | - |
703
+ | 3.1287 | 26750 | 0.0001 | - |
704
+ | 3.1345 | 26800 | 0.0001 | - |
705
+ | 3.1404 | 26850 | 0.0001 | - |
706
+ | 3.1462 | 26900 | 0.0001 | - |
707
+ | 3.1520 | 26950 | 0.0001 | - |
708
+ | 3.1579 | 27000 | 0.0001 | - |
709
+ | 3.1637 | 27050 | 0.0001 | - |
710
+ | 3.1696 | 27100 | 0.0001 | - |
711
+ | 3.1754 | 27150 | 0.0001 | - |
712
+ | 3.1813 | 27200 | 0.0001 | - |
713
+ | 3.1871 | 27250 | 0.0001 | - |
714
+ | 3.1930 | 27300 | 0.0001 | - |
715
+ | 3.1988 | 27350 | 0.0001 | - |
716
+ | 3.2047 | 27400 | 0.0001 | - |
717
+ | 3.2105 | 27450 | 0.0001 | - |
718
+ | 3.2164 | 27500 | 0.0001 | - |
719
+ | 3.2222 | 27550 | 0.0001 | - |
720
+ | 3.2281 | 27600 | 0.0001 | - |
721
+ | 3.2339 | 27650 | 0.0001 | - |
722
+ | 3.2398 | 27700 | 0.0001 | - |
723
+ | 3.2456 | 27750 | 0.0001 | - |
724
+ | 3.2515 | 27800 | 0.0001 | - |
725
+ | 3.2573 | 27850 | 0.0001 | - |
726
+ | 3.2632 | 27900 | 0.0001 | - |
727
+ | 3.2690 | 27950 | 0.0001 | - |
728
+ | 3.2749 | 28000 | 0.0001 | - |
729
+ | 3.2807 | 28050 | 0.0001 | - |
730
+ | 3.2865 | 28100 | 0.0001 | - |
731
+ | 3.2924 | 28150 | 0.0001 | - |
732
+ | 3.2982 | 28200 | 0.0001 | - |
733
+ | 3.3041 | 28250 | 0.0001 | - |
734
+ | 3.3099 | 28300 | 0.0001 | - |
735
+ | 3.3158 | 28350 | 0.0001 | - |
736
+ | 3.3216 | 28400 | 0.0001 | - |
737
+ | 3.3275 | 28450 | 0.0 | - |
738
+ | 3.3333 | 28500 | 0.0001 | - |
739
+ | 3.3392 | 28550 | 0.0001 | - |
740
+ | 3.3450 | 28600 | 0.0001 | - |
741
+ | 3.3509 | 28650 | 0.0001 | - |
742
+ | 3.3567 | 28700 | 0.0001 | - |
743
+ | 3.3626 | 28750 | 0.0001 | - |
744
+ | 3.3684 | 28800 | 0.0001 | - |
745
+ | 3.3743 | 28850 | 0.0001 | - |
746
+ | 3.3801 | 28900 | 0.0001 | - |
747
+ | 3.3860 | 28950 | 0.0001 | - |
748
+ | 3.3918 | 29000 | 0.0001 | - |
749
+ | 3.3977 | 29050 | 0.0001 | - |
750
+ | 3.4035 | 29100 | 0.0001 | - |
751
+ | 3.4094 | 29150 | 0.0001 | - |
752
+ | 3.4152 | 29200 | 0.0001 | - |
753
+ | 3.4211 | 29250 | 0.0001 | - |
754
+ | 3.4269 | 29300 | 0.0001 | - |
755
+ | 3.4327 | 29350 | 0.0001 | - |
756
+ | 3.4386 | 29400 | 0.0001 | - |
757
+ | 3.4444 | 29450 | 0.0001 | - |
758
+ | 3.4503 | 29500 | 0.0001 | - |
759
+ | 3.4561 | 29550 | 0.0001 | - |
760
+ | 3.4620 | 29600 | 0.0001 | - |
761
+ | 3.4678 | 29650 | 0.0001 | - |
762
+ | 3.4737 | 29700 | 0.0001 | - |
763
+ | 3.4795 | 29750 | 0.0001 | - |
764
+ | 3.4854 | 29800 | 0.0001 | - |
765
+ | 3.4912 | 29850 | 0.0001 | - |
766
+ | 3.4971 | 29900 | 0.0001 | - |
767
+ | 3.5029 | 29950 | 0.0001 | - |
768
+ | 3.5088 | 30000 | 0.0001 | - |
769
+ | 3.5146 | 30050 | 0.0001 | - |
770
+ | 3.5205 | 30100 | 0.0001 | - |
771
+ | 3.5263 | 30150 | 0.0001 | - |
772
+ | 3.5322 | 30200 | 0.0001 | - |
773
+ | 3.5380 | 30250 | 0.0001 | - |
774
+ | 3.5439 | 30300 | 0.0001 | - |
775
+ | 3.5497 | 30350 | 0.0001 | - |
776
+ | 3.5556 | 30400 | 0.0001 | - |
777
+ | 3.5614 | 30450 | 0.0001 | - |
778
+ | 3.5673 | 30500 | 0.0001 | - |
779
+ | 3.5731 | 30550 | 0.0001 | - |
780
+ | 3.5789 | 30600 | 0.0001 | - |
781
+ | 3.5848 | 30650 | 0.0001 | - |
782
+ | 3.5906 | 30700 | 0.0001 | - |
783
+ | 3.5965 | 30750 | 0.0001 | - |
784
+ | 3.6023 | 30800 | 0.0001 | - |
785
+ | 3.6082 | 30850 | 0.0001 | - |
786
+ | 3.6140 | 30900 | 0.0001 | - |
787
+ | 3.6199 | 30950 | 0.0001 | - |
788
+ | 3.6257 | 31000 | 0.0001 | - |
789
+ | 3.6316 | 31050 | 0.0001 | - |
790
+ | 3.6374 | 31100 | 0.0001 | - |
791
+ | 3.6433 | 31150 | 0.0001 | - |
792
+ | 3.6491 | 31200 | 0.0001 | - |
793
+ | 3.6550 | 31250 | 0.0001 | - |
794
+ | 3.6608 | 31300 | 0.0001 | - |
795
+ | 3.6667 | 31350 | 0.0001 | - |
796
+ | 3.6725 | 31400 | 0.0001 | - |
797
+ | 3.6784 | 31450 | 0.0001 | - |
798
+ | 3.6842 | 31500 | 0.0001 | - |
799
+ | 3.6901 | 31550 | 0.0001 | - |
800
+ | 3.6959 | 31600 | 0.0001 | - |
801
+ | 3.7018 | 31650 | 0.0 | - |
802
+ | 3.7076 | 31700 | 0.0001 | - |
803
+ | 3.7135 | 31750 | 0.0001 | - |
804
+ | 3.7193 | 31800 | 0.0001 | - |
805
+ | 3.7251 | 31850 | 0.0001 | - |
806
+ | 3.7310 | 31900 | 0.0001 | - |
807
+ | 3.7368 | 31950 | 0.0001 | - |
808
+ | 3.7427 | 32000 | 0.0001 | - |
809
+ | 3.7485 | 32050 | 0.0001 | - |
810
+ | 3.7544 | 32100 | 0.0001 | - |
811
+ | 3.7602 | 32150 | 0.0001 | - |
812
+ | 3.7661 | 32200 | 0.0001 | - |
813
+ | 3.7719 | 32250 | 0.0001 | - |
814
+ | 3.7778 | 32300 | 0.0001 | - |
815
+ | 3.7836 | 32350 | 0.0001 | - |
816
+ | 3.7895 | 32400 | 0.0001 | - |
817
+ | 3.7953 | 32450 | 0.0001 | - |
818
+ | 3.8012 | 32500 | 0.0001 | - |
819
+ | 3.8070 | 32550 | 0.0001 | - |
820
+ | 3.8129 | 32600 | 0.0001 | - |
821
+ | 3.8187 | 32650 | 0.0001 | - |
822
+ | 3.8246 | 32700 | 0.0001 | - |
823
+ | 3.8304 | 32750 | 0.0001 | - |
824
+ | 3.8363 | 32800 | 0.0001 | - |
825
+ | 3.8421 | 32850 | 0.0001 | - |
826
+ | 3.8480 | 32900 | 0.0001 | - |
827
+ | 3.8538 | 32950 | 0.0001 | - |
828
+ | 3.8596 | 33000 | 0.0001 | - |
829
+ | 3.8655 | 33050 | 0.0001 | - |
830
+ | 3.8713 | 33100 | 0.0001 | - |
831
+ | 3.8772 | 33150 | 0.0001 | - |
832
+ | 3.8830 | 33200 | 0.0001 | - |
833
+ | 3.8889 | 33250 | 0.0001 | - |
834
+ | 3.8947 | 33300 | 0.0001 | - |
835
+ | 3.9006 | 33350 | 0.0001 | - |
836
+ | 3.9064 | 33400 | 0.0001 | - |
837
+ | 3.9123 | 33450 | 0.0001 | - |
838
+ | 3.9181 | 33500 | 0.0001 | - |
839
+ | 3.9240 | 33550 | 0.0001 | - |
840
+ | 3.9298 | 33600 | 0.0001 | - |
841
+ | 3.9357 | 33650 | 0.0001 | - |
842
+ | 3.9415 | 33700 | 0.0001 | - |
843
+ | 3.9474 | 33750 | 0.0001 | - |
844
+ | 3.9532 | 33800 | 0.0001 | - |
845
+ | 3.9591 | 33850 | 0.0001 | - |
846
+ | 3.9649 | 33900 | 0.0001 | - |
847
+ | 3.9708 | 33950 | 0.0001 | - |
848
+ | 3.9766 | 34000 | 0.0 | - |
849
+ | 3.9825 | 34050 | 0.0001 | - |
850
+ | 3.9883 | 34100 | 0.0001 | - |
851
+ | 3.9942 | 34150 | 0.0001 | - |
852
+ | 4.0 | 34200 | 0.0001 | 0.3694 |
853
+
854
+ * The bold row denotes the saved checkpoint.
855
+ ### Framework Versions
856
+ - Python: 3.10.12
857
+ - SetFit: 1.0.3
858
+ - Sentence Transformers: 2.2.2
859
+ - Transformers: 4.36.2
860
+ - PyTorch: 2.1.2+cu121
861
+ - Datasets: 2.16.1
862
+ - Tokenizers: 0.15.0
863
+
864
+ ## Citation
865
+
866
+ ### BibTeX
867
+ ```bibtex
868
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
869
+ doi = {10.48550/ARXIV.2209.11055},
870
+ url = {https://arxiv.org/abs/2209.11055},
871
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
872
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
873
+ title = {Efficient Few-Shot Learning Without Prompts},
874
+ publisher = {arXiv},
875
+ year = {2022},
876
+ copyright = {Creative Commons Attribution 4.0 International}
877
+ }
878
+ ```
879
+
880
+ <!--
881
+ ## Glossary
882
+
883
+ *Clearly define terms in order to be accessible across audiences.*
884
+ -->
885
+
886
+ <!--
887
+ ## Model Card Authors
888
+
889
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
890
+ -->
891
+
892
+ <!--
893
+ ## Model Card Contact
894
+
895
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
896
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_17100/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural"
4
+ ],
5
+ "normalize_embeddings": false
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62a661c5c18c21f69cd284b7b6c699069023f5050e67e9be9bd3daef41a28dbd
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea278ca90046b1918252704a2cd30081a0947d4b2082a456e6817723b82e13b3
3
+ size 118863
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff