text-davinci-003-chat / tiktoken.py
rajammanabrolu's picture
Update tiktoken.py
225a8dc
raw
history blame
14.6 kB
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
from functools import lru_cache
from typing import Any, Dict, List, Optional, Tuple
import torch
from transformers import PreTrainedTokenizer
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""
# Taken from
# https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
@lru_cache()
def bytes_to_unicode():
"""Returns list of utf-8 byte and a mapping to unicode strings.
We specifically avoids mapping to whitespace/control characters the bpe code
barfs on.
The reversible bpe codes work on unicode strings. This means you need a
large # of unicode characters in your vocab if you want to avoid UNKs. When
you're at something like a 10B token dataset you end up needing around 5K
for decent coverage. This is a significant percentage of your normal, say,
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
unicode strings.
"""
bs = (list(range(ord('!'),
ord('~') + 1)) + list(range(ord('¡'),
ord('¬') + 1)) +
list(range(ord('®'),
ord('ÿ') + 1)))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
tokenizers.
See HuggingFace for further documentation on general tokenizer methods.
"""
model_input_names = ['input_ids', 'attention_mask']
def __init__(self,
model_name: Optional[str] = None,
encoding_name: Optional[str] = None,
add_bos_token: bool = False,
add_eos_token: bool = False,
use_default_system_prompt: bool = False,
unk_token: Optional[str] = '<|endoftext|>',
eos_token: Optional[str] = '<|endoftext|>',
bos_token: Optional[str] = '<|endoftext|>',
pad_token: Optional[str] = None,
**kwargs: Any):
"""Constructor creates a tiktoken tokenizer to use as the underlying.
tokenizer.
Args:
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
Either model_name or encoding_name must be set, but not both.
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
Either model_name or encoding_name must be set, but not both.
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
pad_token (Optional[str], optional): The pad token. Defaults to None.
"""
try:
import tiktoken
except:
raise ImportError(
'You need to install tiktoken to use TiktokenTokenizerWrapper.')
# Workaround to make tiktokenizer picklable.
# https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
# There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
import copyreg
import functools
from tiktoken import Encoding # type: ignore (thirdParty)
def pickle_Encoding(enc: Encoding):
return (functools.partial(Encoding,
enc.name,
pat_str=enc._pat_str,
mergeable_ranks=enc._mergeable_ranks,
special_tokens=enc._special_tokens), ())
copyreg.pickle(Encoding, pickle_Encoding)
if model_name is not None and encoding_name is not None:
raise ValueError(
'You need to specify either model_name or encoding_name, not both.'
)
self.model_name = model_name
self.encoding_name = encoding_name
if self.model_name is not None:
self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty)
self.model_name)
elif self.encoding_name is not None:
self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty)
self.encoding_name)
else:
raise ValueError(
'You need to specify either model_name or encoding_name.')
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.decoder = {}
for i in range(self.encoding.n_vocab):
try:
self.encoding.decode_single_token_bytes(i)
except KeyError:
continue
# Taken from
# https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
decoding = ''.join([
bytes_to_unicode()[ord(char)] for char in
self.encoding.decode_single_token_bytes(i).decode('latin-1')
])
self.decoder[i] = decoding
self.encoder = {}
for i in range(self.encoding.n_vocab):
if i in self.decoder:
self.encoder[self.decoder[i]] = i
super().__init__(model_name=model_name,
encoding_name=encoding_name,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
use_default_system_prompt=use_default_system_prompt,
unk_token=unk_token,
eos_token=eos_token,
bos_token=bos_token,
pad_token=pad_token,
**kwargs)
@property
def vocab_size(self) -> int:
"""Returns vocab size."""
return self.encoding.n_vocab
@property
def is_fast(self) -> bool:
return False
@property
def default_chat_template(self):
"""Chat ML Template for User/Assistant.
Pinning default Chat ML template in case defaults change.
"""
template = (
"{% set system_message = '' %}"
'{% if USE_DEFAULT_PROMPT == true %}'
"{{'<|im_start|>system\n' + 'DEFAULT_SYSTEM_PROMPT'}}"
'{% endif %}'
'{% for message in messages %}'
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
'{% endfor %}')
template = template.replace(
'USE_DEFAULT_PROMPT',
'true' if self.use_default_system_prompt else 'false')
template = template.replace('DEFAULT_SYSTEM_PROMPT',
DEFAULT_SYSTEM_PROMPT)
return template
def get_vocab(self) -> Dict[str, int]:
"""Returns vocab as a dict.
Note: This function does not work properly due to difference in assumptions between tiktoken and Hugging Face tokenizers.
Most uses do not need to use get_vocab, so this is not a priority to fix.
"""
# As far as I can tell, we don't require get_vocab to completely work,
# but when using additional_special_tokens, Hugging Face determines the next
# token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
vocab_clone = self.encoder.copy()
extra_id_index = 0
candidate_extra_id = f'<extra_id_{extra_id_index}>'
indices_to_fill_in = {i for i in range(self.vocab_size)} - set(
vocab_clone.values())
# Add enough indices to make get_vocab() the right length
for index_to_add in indices_to_fill_in:
# Make sure we don't overwrite a token that already exists
while candidate_extra_id in vocab_clone:
extra_id_index += 1
candidate_extra_id = f'<extra_id_{extra_id_index}>'
# Get an index to add and add the item
vocab_clone[candidate_extra_id] = index_to_add
return vocab_clone
def _tokenize(self, text: str) -> List[str]:
"""Returns a tokenized string."""
if not isinstance(text, str):
raise ValueError(
f'Expected a string input to _tokenize but got {type(text)}.')
tokens = [
self.decoder[t]
for t in self.encoding.encode(text, allowed_special='all')
]
return tokens
def _convert_token_to_id(self, token: str):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens: List[str]):
"""Converts a sequence of tokens (string) in a single string."""
text = ''.join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8')
return text
def build_inputs_with_special_tokens(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False) -> List[int]:
"""Retrieves sequence ids from a token list that has no special tokens.
Function copied from
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295
added. This method is called when adding special tokens using the
tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
def create_token_type_ids_from_sequences(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
sep = [self.sep_token_id]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self,
save_directory: str,
filename_prefix: Optional[str] = None) -> Tuple[str]:
# ignore the below type to keep the original signature
# we are knowingly breaking the signature here, although not 100% certain
# it doesn't have side effects
# There is some code in huggingface that calls this function to get the vocab files,
# but it doesn't seem to access them (or at least checks for their existence
# before accessing them)
return (None, None) # type: ignore
def sanitize_special_tokens(self) -> int:
"""Make sure that all the special tokens attributes of the tokenizer.
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
vocabulary.
Add the missing ones to the vocabulary if needed.
Return:
`int`: The number of tokens added in the vocabulary during the operation.
"""
actual_new_tokens = []
for token in self.all_special_tokens_extended:
encoded = self.encoding.encode(token, allowed_special='all')
if len(encoded) > 1:
actual_new_tokens.append(token)
return self.add_tokens(actual_new_tokens, special_tokens=True)
def construct_logit_tensor(self, logprobs: Dict[str,
float]) -> torch.Tensor:
"""Construct tensor of shape (vocab_size,) mapping words to logprobs.
Args:
logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model.
"""
tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size))
for k in logprobs:
encoding = self(k)['input_ids']
idx = encoding[0]
tensor[idx] = logprobs[k]
return tensor
TiktokenTokenizerWrapper.register_for_auto_class()