rajammanabrolu
commited on
Commit
·
3f4b7e0
1
Parent(s):
733c190
Upload tokenizer
Browse files- special_tokens_map.json +9 -0
- tiktoken.py +290 -0
- tokenizer_config.json +24 -0
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": "<|endoftext|>",
|
7 |
+
"eos_token": "<|endoftext|>",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|
tiktoken.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML LLM Foundry authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from transformers import PreTrainedTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
11 |
+
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
|
12 |
+
|
13 |
+
tokenizers.
|
14 |
+
|
15 |
+
See HuggingFace for further documentation on general tokenizer methods.
|
16 |
+
"""
|
17 |
+
|
18 |
+
model_input_names = ['input_ids', 'attention_mask']
|
19 |
+
|
20 |
+
def __init__(self,
|
21 |
+
model_name: Optional[str] = None,
|
22 |
+
encoding_name: Optional[str] = None,
|
23 |
+
add_bos_token: bool = False,
|
24 |
+
add_eos_token: bool = False,
|
25 |
+
unk_token: Optional[str] = '<|endoftext|>',
|
26 |
+
eos_token: Optional[str] = '<|endoftext|>',
|
27 |
+
bos_token: Optional[str] = '<|endoftext|>',
|
28 |
+
pad_token: Optional[str] = None,
|
29 |
+
**kwargs: Dict[str, Any]):
|
30 |
+
"""Constructor creates a tiktoken tokenizer to use as the underlying.
|
31 |
+
|
32 |
+
tokenizer.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
|
36 |
+
Either model_name or encoding_name must be set, but not both.
|
37 |
+
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
|
38 |
+
Either model_name or encoding_name must be set, but not both.
|
39 |
+
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
|
40 |
+
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
|
41 |
+
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
|
42 |
+
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
|
43 |
+
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
|
44 |
+
pad_token (Optional[str], optional): The pad token. Defaults to None.
|
45 |
+
"""
|
46 |
+
try:
|
47 |
+
import tiktoken
|
48 |
+
except:
|
49 |
+
raise ImportError(
|
50 |
+
'You need to install tiktoken to use TiktokenTokenizerWrapper.')
|
51 |
+
|
52 |
+
if model_name is not None and encoding_name is not None:
|
53 |
+
raise ValueError(
|
54 |
+
'You need to specify either model_name or encoding_name, not both.'
|
55 |
+
)
|
56 |
+
|
57 |
+
self.model_name = model_name
|
58 |
+
self.encoding_name = encoding_name
|
59 |
+
|
60 |
+
if self.model_name is not None:
|
61 |
+
self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty)
|
62 |
+
self.model_name)
|
63 |
+
elif self.encoding_name is not None:
|
64 |
+
self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty)
|
65 |
+
self.encoding_name)
|
66 |
+
else:
|
67 |
+
raise ValueError(
|
68 |
+
'You need to specify either model_name or encoding_name.')
|
69 |
+
|
70 |
+
self.add_bos_token = add_bos_token
|
71 |
+
self.add_eos_token = add_eos_token
|
72 |
+
|
73 |
+
super().__init__(model_name=model_name,
|
74 |
+
encoding_name=encoding_name,
|
75 |
+
add_bos_token=add_bos_token,
|
76 |
+
add_eos_token=add_eos_token,
|
77 |
+
unk_token=unk_token,
|
78 |
+
eos_token=eos_token,
|
79 |
+
bos_token=bos_token,
|
80 |
+
pad_token=pad_token,
|
81 |
+
**kwargs)
|
82 |
+
|
83 |
+
@property
|
84 |
+
def vocab_size(self) -> int:
|
85 |
+
"""Returns vocab size."""
|
86 |
+
return self.encoding.n_vocab
|
87 |
+
|
88 |
+
@property
|
89 |
+
def is_fast(self) -> bool:
|
90 |
+
return False
|
91 |
+
|
92 |
+
def get_vocab(self) -> Dict[str, int]:
|
93 |
+
"""Returns vocab as a dict."""
|
94 |
+
vocab = {}
|
95 |
+
for i in range(self.vocab_size):
|
96 |
+
try:
|
97 |
+
# need to try this first, so that we get a proper KeyError,
|
98 |
+
# otherwise it crashes in the rust code
|
99 |
+
_ = self.encoding.decode_single_token_bytes(i)
|
100 |
+
vocab[self.encoding.decode([i])] = i
|
101 |
+
except KeyError:
|
102 |
+
pass
|
103 |
+
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text: str) -> List[int]:
|
107 |
+
"""Returns a tokenized string.
|
108 |
+
|
109 |
+
Note: We have slightly redefined the expected contract between this method and
|
110 |
+
the _convert_token_to_id method. Normally, this method turns a string, into a list of strings,
|
111 |
+
and then the _convert_token_to_id method turns that list of strings into a list of integers.
|
112 |
+
However, not all vocab indices can be decoded into a string, so instead we just return the integers
|
113 |
+
from this function, and have adjusted the _convert_token_to_id method to handle integers as well as strings.
|
114 |
+
The only use of _tokenize that I could find was in this way, so this _should_ be safe.
|
115 |
+
"""
|
116 |
+
if not isinstance(text, str):
|
117 |
+
raise ValueError(
|
118 |
+
f'Expected a string input to _tokenize but got {type(text)}.')
|
119 |
+
|
120 |
+
tokens = [t for t in self.encoding.encode(text, allowed_special='all')]
|
121 |
+
|
122 |
+
return tokens
|
123 |
+
|
124 |
+
def _convert_token_to_id(self, token: Union[int, str]) -> int:
|
125 |
+
"""Converts a token (str) into an id using the vocab."""
|
126 |
+
if isinstance(token, int):
|
127 |
+
return token
|
128 |
+
|
129 |
+
return self.encoding.encode(token, allowed_special='all')[0]
|
130 |
+
|
131 |
+
def _convert_id_to_token(self, index: int) -> str:
|
132 |
+
"""Converts an index (integer) into a token (str) using the vocab."""
|
133 |
+
return self.encoding.decode([index])
|
134 |
+
|
135 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
136 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
137 |
+
return ''.join(tokens)
|
138 |
+
|
139 |
+
def convert_ids_to_tokens(
|
140 |
+
self,
|
141 |
+
ids: Union[int, List[int]],
|
142 |
+
skip_special_tokens: bool = False) -> Union[str, List[str]]:
|
143 |
+
"""Converts a single index or a sequence of indices into a token or a.
|
144 |
+
|
145 |
+
sequence of tokens, using the vocabulary and added tokens.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
ids (`int` or `List[int]`):
|
149 |
+
The token id (or token ids) to convert to tokens.
|
150 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
151 |
+
Whether or not to remove special tokens in the decoding.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`str` or `List[str]`: The decoded token(s).
|
155 |
+
"""
|
156 |
+
if isinstance(ids, int):
|
157 |
+
if ids in self.added_tokens_decoder:
|
158 |
+
return self.added_tokens_decoder[ids]
|
159 |
+
|
160 |
+
return self._convert_id_to_token(ids)
|
161 |
+
|
162 |
+
# current_stream will collect multiple tokens, and then separately add items
|
163 |
+
# for each added token. This is done so that decode works properly with token ids
|
164 |
+
# that cannot be represented naively in utf-8.
|
165 |
+
tokens = []
|
166 |
+
current_stream = []
|
167 |
+
for index in ids:
|
168 |
+
if skip_special_tokens and index in self.all_special_ids:
|
169 |
+
continue
|
170 |
+
|
171 |
+
if index in self.added_tokens_decoder:
|
172 |
+
tokens.append(self.encoding.decode(current_stream))
|
173 |
+
current_stream = []
|
174 |
+
tokens.append(self.added_tokens_decoder[index])
|
175 |
+
else:
|
176 |
+
current_stream.append(index)
|
177 |
+
|
178 |
+
if len(current_stream) > 0:
|
179 |
+
tokens.append(self.encoding.decode(current_stream))
|
180 |
+
return tokens
|
181 |
+
|
182 |
+
def build_inputs_with_special_tokens(
|
183 |
+
self,
|
184 |
+
token_ids_0: List[int],
|
185 |
+
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
186 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
187 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
188 |
+
|
189 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
190 |
+
|
191 |
+
if token_ids_1 is not None:
|
192 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
193 |
+
|
194 |
+
return output
|
195 |
+
|
196 |
+
def get_special_tokens_mask(
|
197 |
+
self,
|
198 |
+
token_ids_0: List[int],
|
199 |
+
token_ids_1: Optional[List[int]] = None,
|
200 |
+
already_has_special_tokens: bool = False) -> List[int]:
|
201 |
+
"""Retrieves sequence ids from a token list that has no special tokens.
|
202 |
+
|
203 |
+
Function copied from
|
204 |
+
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295
|
205 |
+
|
206 |
+
added. This method is called when adding special tokens using the
|
207 |
+
tokenizer `prepare_for_model` or `encode_plus` methods.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
token_ids_0 (`List[int]`):
|
211 |
+
List of IDs.
|
212 |
+
token_ids_1 (`List[int]`, *optional*):
|
213 |
+
Optional second list of IDs for sequence pairs.
|
214 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
215 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
219 |
+
"""
|
220 |
+
if already_has_special_tokens:
|
221 |
+
return super().get_special_tokens_mask(
|
222 |
+
token_ids_0=token_ids_0,
|
223 |
+
token_ids_1=token_ids_1,
|
224 |
+
already_has_special_tokens=True)
|
225 |
+
|
226 |
+
bos_token_id = [1] if self.add_bos_token else []
|
227 |
+
eos_token_id = [1] if self.add_eos_token else []
|
228 |
+
|
229 |
+
if token_ids_1 is None:
|
230 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
231 |
+
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
|
232 |
+
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
|
233 |
+
|
234 |
+
def create_token_type_ids_from_sequences(
|
235 |
+
self,
|
236 |
+
token_ids_0: List[int],
|
237 |
+
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
238 |
+
sep = [self.sep_token_id]
|
239 |
+
|
240 |
+
if token_ids_1 is None:
|
241 |
+
return len(token_ids_0 + sep) * [0]
|
242 |
+
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
243 |
+
|
244 |
+
def save_vocabulary(self,
|
245 |
+
save_directory: str,
|
246 |
+
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
247 |
+
|
248 |
+
# ignore the below type to keep the original signature
|
249 |
+
# we are knowingly breaking the signature here, although not 100% certain
|
250 |
+
# it doesn't have side effects
|
251 |
+
# There is some code in huggingface that calls this function to get the vocab files,
|
252 |
+
# but it doesn't seem to access them (or at least checks for their existence
|
253 |
+
# before accessing them)
|
254 |
+
return (None, None) # type: ignore
|
255 |
+
|
256 |
+
def sanitize_special_tokens(self) -> int:
|
257 |
+
"""Make sure that all the special tokens attributes of the tokenizer.
|
258 |
+
|
259 |
+
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
|
260 |
+
vocabulary.
|
261 |
+
|
262 |
+
Add the missing ones to the vocabulary if needed.
|
263 |
+
|
264 |
+
Return:
|
265 |
+
`int`: The number of tokens added in the vocabulary during the operation.
|
266 |
+
"""
|
267 |
+
actual_new_tokens = []
|
268 |
+
for token in self.all_special_tokens_extended:
|
269 |
+
encoded = self.encoding.encode(token, allowed_special='all')
|
270 |
+
if len(encoded) > 1:
|
271 |
+
actual_new_tokens.append(token)
|
272 |
+
|
273 |
+
return self.add_tokens(actual_new_tokens, special_tokens=True)
|
274 |
+
|
275 |
+
def construct_logit_tensor(self, logprobs: Dict[str,
|
276 |
+
float]) -> torch.Tensor:
|
277 |
+
"""Construct tensor of shape (vocab_size,) mapping words to logprobs.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model.
|
281 |
+
"""
|
282 |
+
tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size))
|
283 |
+
for k in logprobs:
|
284 |
+
encoding = self(k)['input_ids']
|
285 |
+
idx = encoding[0]
|
286 |
+
tensor[idx] = logprobs[k]
|
287 |
+
return tensor
|
288 |
+
|
289 |
+
|
290 |
+
TiktokenTokenizerWrapper.register_for_auto_class()
|
tokenizer_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"additional_special_tokens": [
|
6 |
+
"<|im_start|>",
|
7 |
+
"<|im_end|>"
|
8 |
+
],
|
9 |
+
"auto_map": {
|
10 |
+
"AutoTokenizer": [
|
11 |
+
"tiktoken.TiktokenTokenizerWrapper",
|
12 |
+
null
|
13 |
+
]
|
14 |
+
},
|
15 |
+
"bos_token": "<|endoftext|>",
|
16 |
+
"clean_up_tokenization_spaces": true,
|
17 |
+
"encoding_name": null,
|
18 |
+
"eos_token": "<|endoftext|>",
|
19 |
+
"model_max_length": 4096,
|
20 |
+
"model_name": "text-davinci-003",
|
21 |
+
"pad_token": null,
|
22 |
+
"tokenizer_class": "TiktokenTokenizerWrapper",
|
23 |
+
"unk_token": "<|endoftext|>"
|
24 |
+
}
|