rajeshradhakrishnan
commited on
Commit
•
da94138
1
Parent(s):
79331a2
updated with more info
Browse files
README.md
CHANGED
@@ -3,19 +3,35 @@ tags:
|
|
3 |
- fastai
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
🥳
|
9 |
|
10 |
-
|
11 |
-
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
---
|
21 |
|
@@ -23,10 +39,23 @@ Greetings fellow fastlearner 🤝! Don't forget to delete this content from your
|
|
23 |
# Model card
|
24 |
|
25 |
## Model description
|
26 |
-
The is a Malayalam classifier model for labels 'business', 'entertainment', 'sports', 'technology'
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
-
|
30 |
|
31 |
## Training and evaluation data
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
- fastai
|
4 |
---
|
5 |
|
6 |
+
# Malayalam (മലയാളം) Classifier using fastai (Working in Progress)
|
7 |
|
8 |
+
🥳 This model is my attempt to use machine learning using Malayalam Language. Huge inspiration from [Malayalam Text Classifier](https://kurianbenoy.com/2022-05-30-malayalamtext-0/). Courtesy to @waydegilliam for [blurr](https://ohmeow.github.io/blurr/text-examples-multilabel.html)
|
9 |
|
10 |
+
🌈 മലയാളത്തിൽ മെഷീൻ ലീർണിങ് പഠിക്കാനും പിന്നേ പരിചയപ്പെടാനും, to be continued...
|
|
|
11 |
|
12 |
+
# How its built ? & How to use ?
|
13 |
|
14 |
+
Please find the [notebook](https://nbviewer.org/github/rajeshradhakrishnanmvk/kitchen2.0/blob/feature101-frontend/ml/fastai_X_Hugging_Face_Group_2022.ipynb) used for training the model
|
15 |
|
16 |
+
Usage:
|
17 |
|
18 |
+
```
|
19 |
+
from huggingface_hub import from_pretrained_fastai
|
20 |
+
learner = from_pretrained_fastai(rajeshradhakrishnan/ml-news-classify-fastai)
|
21 |
+
|
22 |
+
|
23 |
+
sentences = ["ഓഹരി വിപണി തകരുമ്പോള് നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം",
|
24 |
+
"വാര്ണറുടെ ഒറ്റക്കയ്യന് ക്യാച്ചില് അമ്പരന്ന് ക്രിക്കറ്റ് ലോകം"]
|
25 |
+
|
26 |
+
probs = learner.predict(sentences)
|
27 |
+
# 'business', 'entertainment', 'sports', 'technology'
|
28 |
+
for idx in range(len(sentences)):
|
29 |
+
print(f"Probability that sentence '{sentences[idx]}' is business is: {100*probs[idx]['probs'][0]:.2f}%")
|
30 |
+
print(f"Probability that sentence '{sentences[idx]}' is entertainment is: {100*probs[idx]['probs'][1]:.2f}%")
|
31 |
+
print(f"Probability that sentence '{sentences[idx]}' is sports is: {100*probs[idx]['probs'][2]:.2f}%")
|
32 |
+
print(f"Probability that sentence '{sentences[idx]}' is technology is: {100*probs[idx]['probs'][3]:.2f}%")
|
33 |
+
|
34 |
+
```
|
35 |
|
36 |
---
|
37 |
|
|
|
39 |
# Model card
|
40 |
|
41 |
## Model description
|
42 |
+
The is a Malayalam classifier model for labels 'business', 'entertainment', 'sports', 'technology'.
|
43 |
|
44 |
## Intended uses & limitations
|
45 |
+
The model can be used to categorize malayalam new sfeed.
|
46 |
|
47 |
## Training and evaluation data
|
48 |
+
|
49 |
+
Data is from the [AI4Bharat-IndicNLP Dataset](https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset) and wrapper to extract only Malayalam data( [HF dataset](https://huggingface.co/datasets/rajeshradhakrishnan/malayalam_news))!.
|
50 |
+
|
51 |
+
## Citation
|
52 |
+
|
53 |
+
|
54 |
+
```
|
55 |
+
@article{kunchukuttan2020indicnlpcorpus,
|
56 |
+
title={AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages},
|
57 |
+
author={Anoop Kunchukuttan and Divyanshu Kakwani and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
|
58 |
+
year={2020},
|
59 |
+
journal={arXiv preprint arXiv:2005.00085},
|
60 |
+
}
|
61 |
+
```
|