File size: 2,126 Bytes
4e0b90f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: rv2307/electra-small-ner
model-index:
- name: STS-Lora-Fine-Tuning-Capstone-electra-model-auto-cross-testing-123-final-pipes-value-error-solve
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# STS-Lora-Fine-Tuning-Capstone-electra-model-auto-cross-testing-123-final-pipes-value-error-solve
This model is a fine-tuned version of [rv2307/electra-small-ner](https://huggingface.co/rv2307/electra-small-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7183
- Accuracy: 0.2727
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 180 | 1.7288 | 0.2429 |
| No log | 2.0 | 360 | 1.7230 | 0.2502 |
| 1.7009 | 3.0 | 540 | 1.7216 | 0.2676 |
| 1.7009 | 4.0 | 720 | 1.7216 | 0.2705 |
| 1.7009 | 5.0 | 900 | 1.7183 | 0.2748 |
| 1.6754 | 6.0 | 1080 | 1.7186 | 0.2748 |
| 1.6754 | 7.0 | 1260 | 1.7178 | 0.2741 |
| 1.6754 | 8.0 | 1440 | 1.7184 | 0.2748 |
| 1.6715 | 9.0 | 1620 | 1.7183 | 0.2741 |
| 1.6715 | 10.0 | 1800 | 1.7183 | 0.2727 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |