File size: 23,252 Bytes
10ea30d d426f8f 10ea30d d426f8f 10ea30d d426f8f 10ea30d d426f8f 10ea30d d426f8f 10ea30d 6ea45f3 10ea30d bcef795 10ea30d d426f8f 10ea30d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: churn.pkl
widget:
structuredData:
Contract:
- Two year
- Month-to-month
- One year
Dependents:
- 'Yes'
- 'No'
- 'No'
DeviceProtection:
- 'No'
- 'No'
- 'Yes'
InternetService:
- Fiber optic
- Fiber optic
- DSL
MonthlyCharges:
- 79.05
- 84.95
- 68.8
MultipleLines:
- 'Yes'
- 'Yes'
- 'Yes'
OnlineBackup:
- 'No'
- 'No'
- 'Yes'
OnlineSecurity:
- 'Yes'
- 'No'
- 'Yes'
PaperlessBilling:
- 'No'
- 'Yes'
- 'No'
Partner:
- 'Yes'
- 'Yes'
- 'No'
PaymentMethod:
- Bank transfer (automatic)
- Electronic check
- Bank transfer (automatic)
PhoneService:
- 'Yes'
- 'Yes'
- 'Yes'
SeniorCitizen:
- 0
- 0
- 0
StreamingMovies:
- 'No'
- 'No'
- 'No'
StreamingTV:
- 'No'
- 'Yes'
- 'No'
TechSupport:
- 'No'
- 'No'
- 'Yes'
TotalCharges:
- 5730.7
- 1378.25
- 4111.35
gender:
- Female
- Female
- Male
tenure:
- 72
- 16
- 63
---
# Model description
This is a Logistic Regression model trained on churn dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------------------------|-----------------------------------------------------------------------------------|
| memory | |
| steps | [('preprocessor', ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('std_scaler',<br /> StandardScaler())]),<br /> ['MonthlyCharges', 'TotalCharges', 'tenure']),<br /> ('cat', OneHotEncoder(handle_unknown='ignore'),<br /> ['SeniorCitizen', 'gender', 'Partner',<br /> 'Dependents', 'PhoneService', 'MultipleLines',<br /> 'InternetService', 'OnlineSecurity',<br /> 'OnlineBackup', 'DeviceProtection',<br /> 'TechSupport', 'StreamingTV',<br /> 'StreamingMovies', 'Contract',<br /> 'PaperlessBilling', 'PaymentMethod'])])), ('classifier', LogisticRegression(class_weight='balanced', max_iter=300))] |
| verbose | False |
| preprocessor | ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('std_scaler',<br /> StandardScaler())]),<br /> ['MonthlyCharges', 'TotalCharges', 'tenure']),<br /> ('cat', OneHotEncoder(handle_unknown='ignore'),<br /> ['SeniorCitizen', 'gender', 'Partner',<br /> 'Dependents', 'PhoneService', 'MultipleLines',<br /> 'InternetService', 'OnlineSecurity',<br /> 'OnlineBackup', 'DeviceProtection',<br /> 'TechSupport', 'StreamingTV',<br /> 'StreamingMovies', 'Contract',<br /> 'PaperlessBilling', 'PaymentMethod'])]) |
| classifier | LogisticRegression(class_weight='balanced', max_iter=300) |
| preprocessor__n_jobs | |
| preprocessor__remainder | drop |
| preprocessor__sparse_threshold | 0.3 |
| preprocessor__transformer_weights | |
| preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('std_scaler', StandardScaler())]), ['MonthlyCharges', 'TotalCharges', 'tenure']), ('cat', OneHotEncoder(handle_unknown='ignore'), ['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod'])] |
| preprocessor__verbose | False |
| preprocessor__verbose_feature_names_out | True |
| preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('std_scaler', StandardScaler())]) |
| preprocessor__cat | OneHotEncoder(handle_unknown='ignore') |
| preprocessor__num__memory | |
| preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())] |
| preprocessor__num__verbose | False |
| preprocessor__num__imputer | SimpleImputer(strategy='median') |
| preprocessor__num__std_scaler | StandardScaler() |
| preprocessor__num__imputer__add_indicator | False |
| preprocessor__num__imputer__copy | True |
| preprocessor__num__imputer__fill_value | |
| preprocessor__num__imputer__missing_values | nan |
| preprocessor__num__imputer__strategy | median |
| preprocessor__num__imputer__verbose | 0 |
| preprocessor__num__std_scaler__copy | True |
| preprocessor__num__std_scaler__with_mean | True |
| preprocessor__num__std_scaler__with_std | True |
| preprocessor__cat__categories | auto |
| preprocessor__cat__drop | |
| preprocessor__cat__dtype | <class 'numpy.float64'> |
| preprocessor__cat__handle_unknown | ignore |
| preprocessor__cat__sparse | True |
| classifier__C | 1.0 |
| classifier__class_weight | balanced |
| classifier__dual | False |
| classifier__fit_intercept | True |
| classifier__intercept_scaling | 1 |
| classifier__l1_ratio | |
| classifier__max_iter | 300 |
| classifier__multi_class | auto |
| classifier__n_jobs | |
| classifier__penalty | l2 |
| classifier__random_state | |
| classifier__solver | lbfgs |
| classifier__tol | 0.0001 |
| classifier__verbose | 0 |
| classifier__warm_start | False |
</details>
### Model Plot
The model plot is below.
<style>#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 {color: black;background-color: white;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 pre{padding: 0;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-toggleable {background-color: white;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-item {z-index: 1;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-parallel-item:only-child::after {width: 0;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f0122ce0-64cb-41b3-8d66-0b116516efc3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-f0122ce0-64cb-41b3-8d66-0b116516efc3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('std_scaler',StandardScaler())]),['MonthlyCharges','TotalCharges', 'tenure']),('cat',OneHotEncoder(handle_unknown='ignore'),['SeniorCitizen', 'gender','Partner', 'Dependents','PhoneService','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport', 'StreamingTV','StreamingMovies','Contract','PaperlessBilling','PaymentMethod'])])),('classifier',LogisticRegression(class_weight='balanced', max_iter=300))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="193bb424-11e4-4240-a49c-2b9ff9c16021" type="checkbox" ><label for="193bb424-11e4-4240-a49c-2b9ff9c16021" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('std_scaler',StandardScaler())]),['MonthlyCharges','TotalCharges', 'tenure']),('cat',OneHotEncoder(handle_unknown='ignore'),['SeniorCitizen', 'gender','Partner', 'Dependents','PhoneService','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport', 'StreamingTV','StreamingMovies','Contract','PaperlessBilling','PaymentMethod'])])),('classifier',LogisticRegression(class_weight='balanced', max_iter=300))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="54004708-11cd-4f85-bff3-744af144ae72" type="checkbox" ><label for="54004708-11cd-4f85-bff3-744af144ae72" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('std_scaler',StandardScaler())]),['MonthlyCharges', 'TotalCharges', 'tenure']),('cat', OneHotEncoder(handle_unknown='ignore'),['SeniorCitizen', 'gender', 'Partner','Dependents', 'PhoneService', 'MultipleLines','InternetService', 'OnlineSecurity','OnlineBackup', 'DeviceProtection','TechSupport', 'StreamingTV','StreamingMovies', 'Contract','PaperlessBilling', 'PaymentMethod'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="53cbe948-0bd7-4512-874e-7c0e8287ebf2" type="checkbox" ><label for="53cbe948-0bd7-4512-874e-7c0e8287ebf2" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>['MonthlyCharges', 'TotalCharges', 'tenure']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9748155a-6575-4ba1-b5a2-9171c6ac1a11" type="checkbox" ><label for="9748155a-6575-4ba1-b5a2-9171c6ac1a11" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(strategy='median')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="27303a89-9235-4743-862c-fa1959656bb7" type="checkbox" ><label for="27303a89-9235-4743-862c-fa1959656bb7" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="0a07f5b9-db03-4bf5-bc2c-9b3f60e6ab16" type="checkbox" ><label for="0a07f5b9-db03-4bf5-bc2c-9b3f60e6ab16" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d985852a-65b0-4b77-897a-82c0ef3fa365" type="checkbox" ><label for="d985852a-65b0-4b77-897a-82c0ef3fa365" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore')</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="050e23d8-6e98-4cfa-9ff8-cc01091c6a1f" type="checkbox" ><label for="050e23d8-6e98-4cfa-9ff8-cc01091c6a1f" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(class_weight='balanced', max_iter=300)</pre></div></div></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|----------|
| accuracy | 0.730305 |
| f1 score | 0.730305 |
# How to Get Started with the Model
Use the code below to get started with the model.
```python
import joblib
import json
import pandas as pd
clf = joblib.load(churn.pkl)
with open("config.json") as f:
config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
```
# Model Card Authors
This model card is written by following authors:
skops_user
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
bibtex
@inproceedings{...,year={2020}}
```
# Additional Content
## confusion_matrix
![confusion_matrix](confusion_matrix.png) |