rajistics commited on
Commit
10ea30d
1 Parent(s): 83b6cb5

pushing files to the repo from the example!

Browse files
Files changed (4) hide show
  1. README.md +219 -0
  2. churn.pkl +3 -0
  3. config.json +129 -0
  4. confusion_matrix.png +0 -0
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_file: churn.pkl
9
+ widget:
10
+ structuredData:
11
+ Contract:
12
+ - Two year
13
+ - Month-to-month
14
+ - One year
15
+ Dependents:
16
+ - 'Yes'
17
+ - 'No'
18
+ - 'No'
19
+ DeviceProtection:
20
+ - 'No'
21
+ - 'No'
22
+ - 'Yes'
23
+ InternetService:
24
+ - Fiber optic
25
+ - Fiber optic
26
+ - DSL
27
+ MonthlyCharges:
28
+ - 79.05
29
+ - 84.95
30
+ - 68.8
31
+ MultipleLines:
32
+ - 'Yes'
33
+ - 'Yes'
34
+ - 'Yes'
35
+ OnlineBackup:
36
+ - 'No'
37
+ - 'No'
38
+ - 'Yes'
39
+ OnlineSecurity:
40
+ - 'Yes'
41
+ - 'No'
42
+ - 'Yes'
43
+ PaperlessBilling:
44
+ - 'No'
45
+ - 'Yes'
46
+ - 'No'
47
+ Partner:
48
+ - 'Yes'
49
+ - 'Yes'
50
+ - 'No'
51
+ PaymentMethod:
52
+ - Bank transfer (automatic)
53
+ - Electronic check
54
+ - Bank transfer (automatic)
55
+ PhoneService:
56
+ - 'Yes'
57
+ - 'Yes'
58
+ - 'Yes'
59
+ SeniorCitizen:
60
+ - 0
61
+ - 0
62
+ - 0
63
+ StreamingMovies:
64
+ - 'No'
65
+ - 'No'
66
+ - 'No'
67
+ StreamingTV:
68
+ - 'No'
69
+ - 'Yes'
70
+ - 'No'
71
+ TechSupport:
72
+ - 'No'
73
+ - 'No'
74
+ - 'Yes'
75
+ TotalCharges:
76
+ - 5730.7
77
+ - 1378.25
78
+ - 4111.35
79
+ gender:
80
+ - Female
81
+ - Female
82
+ - Male
83
+ tenure:
84
+ - 72
85
+ - 16
86
+ - 63
87
+ ---
88
+
89
+ # Model description
90
+
91
+ This is a Logistic Regression model trained on churn dataset.
92
+
93
+ ## Intended uses & limitations
94
+
95
+ This model is not ready to be used in production.
96
+
97
+ ## Training Procedure
98
+
99
+ ### Hyperparameters
100
+
101
+ The model is trained with below hyperparameters.
102
+
103
+ <details>
104
+ <summary> Click to expand </summary>
105
+
106
+ | Hyperparameter | Value |
107
+ |--------------------------------------------|-----------------------------------------------------------------------------------|
108
+ | memory | |
109
+ | steps | [('preprocessor', ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('std_scaler',<br /> StandardScaler())]),<br /> ['MonthlyCharges', 'TotalCharges', 'tenure']),<br /> ('cat', OneHotEncoder(handle_unknown='ignore'),<br /> ['SeniorCitizen', 'gender', 'Partner',<br /> 'Dependents', 'PhoneService', 'MultipleLines',<br /> 'InternetService', 'OnlineSecurity',<br /> 'OnlineBackup', 'DeviceProtection',<br /> 'TechSupport', 'StreamingTV',<br /> 'StreamingMovies', 'Contract',<br /> 'PaperlessBilling', 'PaymentMethod'])])), ('classifier', LogisticRegression(class_weight='balanced', max_iter=300))] |
110
+ | verbose | False |
111
+ | preprocessor | ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('std_scaler',<br /> StandardScaler())]),<br /> ['MonthlyCharges', 'TotalCharges', 'tenure']),<br /> ('cat', OneHotEncoder(handle_unknown='ignore'),<br /> ['SeniorCitizen', 'gender', 'Partner',<br /> 'Dependents', 'PhoneService', 'MultipleLines',<br /> 'InternetService', 'OnlineSecurity',<br /> 'OnlineBackup', 'DeviceProtection',<br /> 'TechSupport', 'StreamingTV',<br /> 'StreamingMovies', 'Contract',<br /> 'PaperlessBilling', 'PaymentMethod'])]) |
112
+ | classifier | LogisticRegression(class_weight='balanced', max_iter=300) |
113
+ | preprocessor__n_jobs | |
114
+ | preprocessor__remainder | drop |
115
+ | preprocessor__sparse_threshold | 0.3 |
116
+ | preprocessor__transformer_weights | |
117
+ | preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('std_scaler', StandardScaler())]), ['MonthlyCharges', 'TotalCharges', 'tenure']), ('cat', OneHotEncoder(handle_unknown='ignore'), ['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod'])] |
118
+ | preprocessor__verbose | False |
119
+ | preprocessor__verbose_feature_names_out | True |
120
+ | preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('std_scaler', StandardScaler())]) |
121
+ | preprocessor__cat | OneHotEncoder(handle_unknown='ignore') |
122
+ | preprocessor__num__memory | |
123
+ | preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())] |
124
+ | preprocessor__num__verbose | False |
125
+ | preprocessor__num__imputer | SimpleImputer(strategy='median') |
126
+ | preprocessor__num__std_scaler | StandardScaler() |
127
+ | preprocessor__num__imputer__add_indicator | False |
128
+ | preprocessor__num__imputer__copy | True |
129
+ | preprocessor__num__imputer__fill_value | |
130
+ | preprocessor__num__imputer__missing_values | nan |
131
+ | preprocessor__num__imputer__strategy | median |
132
+ | preprocessor__num__imputer__verbose | deprecated |
133
+ | preprocessor__num__std_scaler__copy | True |
134
+ | preprocessor__num__std_scaler__with_mean | True |
135
+ | preprocessor__num__std_scaler__with_std | True |
136
+ | preprocessor__cat__categories | auto |
137
+ | preprocessor__cat__drop | |
138
+ | preprocessor__cat__dtype | <class 'numpy.float64'> |
139
+ | preprocessor__cat__handle_unknown | ignore |
140
+ | preprocessor__cat__max_categories | |
141
+ | preprocessor__cat__min_frequency | |
142
+ | preprocessor__cat__sparse | True |
143
+ | classifier__C | 1.0 |
144
+ | classifier__class_weight | balanced |
145
+ | classifier__dual | False |
146
+ | classifier__fit_intercept | True |
147
+ | classifier__intercept_scaling | 1 |
148
+ | classifier__l1_ratio | |
149
+ | classifier__max_iter | 300 |
150
+ | classifier__multi_class | auto |
151
+ | classifier__n_jobs | |
152
+ | classifier__penalty | l2 |
153
+ | classifier__random_state | |
154
+ | classifier__solver | lbfgs |
155
+ | classifier__tol | 0.0001 |
156
+ | classifier__verbose | 0 |
157
+ | classifier__warm_start | False |
158
+
159
+ </details>
160
+
161
+ ### Model Plot
162
+
163
+ The model plot is below.
164
+
165
+ <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;std_scaler&#x27;,StandardScaler())]),[&#x27;MonthlyCharges&#x27;,&#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]),(&#x27;cat&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;,&#x27;Partner&#x27;, &#x27;Dependents&#x27;,&#x27;PhoneService&#x27;,&#x27;MultipleLines&#x27;,&#x27;InternetService&#x27;,&#x27;OnlineSecurity&#x27;,&#x27;OnlineBackup&#x27;,&#x27;DeviceProtection&#x27;,&#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;,&#x27;StreamingMovies&#x27;,&#x27;Contract&#x27;,&#x27;PaperlessBilling&#x27;,&#x27;PaymentMethod&#x27;])])),(&#x27;classifier&#x27;,LogisticRegression(class_weight=&#x27;balanced&#x27;, max_iter=300))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;std_scaler&#x27;,StandardScaler())]),[&#x27;MonthlyCharges&#x27;,&#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]),(&#x27;cat&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;,&#x27;Partner&#x27;, &#x27;Dependents&#x27;,&#x27;PhoneService&#x27;,&#x27;MultipleLines&#x27;,&#x27;InternetService&#x27;,&#x27;OnlineSecurity&#x27;,&#x27;OnlineBackup&#x27;,&#x27;DeviceProtection&#x27;,&#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;,&#x27;StreamingMovies&#x27;,&#x27;Contract&#x27;,&#x27;PaperlessBilling&#x27;,&#x27;PaymentMethod&#x27;])])),(&#x27;classifier&#x27;,LogisticRegression(class_weight=&#x27;balanced&#x27;, max_iter=300))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;std_scaler&#x27;,StandardScaler())]),[&#x27;MonthlyCharges&#x27;, &#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]),(&#x27;cat&#x27;, OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;, &#x27;Partner&#x27;,&#x27;Dependents&#x27;, &#x27;PhoneService&#x27;, &#x27;MultipleLines&#x27;,&#x27;InternetService&#x27;, &#x27;OnlineSecurity&#x27;,&#x27;OnlineBackup&#x27;, &#x27;DeviceProtection&#x27;,&#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;,&#x27;StreamingMovies&#x27;, &#x27;Contract&#x27;,&#x27;PaperlessBilling&#x27;, &#x27;PaymentMethod&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>[&#x27;MonthlyCharges&#x27;, &#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;, &#x27;Partner&#x27;, &#x27;Dependents&#x27;, &#x27;PhoneService&#x27;, &#x27;MultipleLines&#x27;, &#x27;InternetService&#x27;, &#x27;OnlineSecurity&#x27;, &#x27;OnlineBackup&#x27;, &#x27;DeviceProtection&#x27;, &#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;, &#x27;StreamingMovies&#x27;, &#x27;Contract&#x27;, &#x27;PaperlessBilling&#x27;, &#x27;PaymentMethod&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(class_weight=&#x27;balanced&#x27;, max_iter=300)</pre></div></div></div></div></div></div></div>
166
+
167
+ ## Evaluation Results
168
+
169
+ You can find the details about evaluation process and the evaluation results.
170
+
171
+
172
+
173
+ | Metric | Value |
174
+ |----------|----------|
175
+ | accuracy | 0.730305 |
176
+ | f1 score | 0.730305 |
177
+
178
+ # How to Get Started with the Model
179
+
180
+ Use the code below to get started with the model.
181
+
182
+ ```python
183
+ import joblib
184
+ import json
185
+ import pandas as pd
186
+ clf = joblib.load(churn.pkl)
187
+ with open("config.json") as f:
188
+ config = json.load(f)
189
+ clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
190
+ ```
191
+
192
+
193
+ # Model Card Authors
194
+
195
+ This model card is written by following authors:
196
+
197
+ skops_user
198
+
199
+ # Model Card Contact
200
+
201
+ You can contact the model card authors through following channels:
202
+ [More Information Needed]
203
+
204
+ # Citation
205
+
206
+ Below you can find information related to citation.
207
+
208
+ **BibTeX:**
209
+ ```
210
+ bibtex
211
+ @inproceedings{...,year={2020}}
212
+ ```
213
+
214
+
215
+ # Additional Content
216
+
217
+ ## confusion_matrix
218
+
219
+ ![confusion_matrix](confusion_matrix.png)
churn.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b11dada9e639d7770537daf493675f1c499516c362a9e233bfee765ab3a5bed
3
+ size 4439
config.json ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "gender",
5
+ "SeniorCitizen",
6
+ "Partner",
7
+ "Dependents",
8
+ "tenure",
9
+ "PhoneService",
10
+ "MultipleLines",
11
+ "InternetService",
12
+ "OnlineSecurity",
13
+ "OnlineBackup",
14
+ "DeviceProtection",
15
+ "TechSupport",
16
+ "StreamingTV",
17
+ "StreamingMovies",
18
+ "Contract",
19
+ "PaperlessBilling",
20
+ "PaymentMethod",
21
+ "MonthlyCharges",
22
+ "TotalCharges"
23
+ ],
24
+ "environment": [
25
+ "scikit-learn=1.1.1"
26
+ ],
27
+ "example_input": {
28
+ "Contract": [
29
+ "Two year",
30
+ "Month-to-month",
31
+ "One year"
32
+ ],
33
+ "Dependents": [
34
+ "Yes",
35
+ "No",
36
+ "No"
37
+ ],
38
+ "DeviceProtection": [
39
+ "No",
40
+ "No",
41
+ "Yes"
42
+ ],
43
+ "InternetService": [
44
+ "Fiber optic",
45
+ "Fiber optic",
46
+ "DSL"
47
+ ],
48
+ "MonthlyCharges": [
49
+ 79.05,
50
+ 84.95,
51
+ 68.8
52
+ ],
53
+ "MultipleLines": [
54
+ "Yes",
55
+ "Yes",
56
+ "Yes"
57
+ ],
58
+ "OnlineBackup": [
59
+ "No",
60
+ "No",
61
+ "Yes"
62
+ ],
63
+ "OnlineSecurity": [
64
+ "Yes",
65
+ "No",
66
+ "Yes"
67
+ ],
68
+ "PaperlessBilling": [
69
+ "No",
70
+ "Yes",
71
+ "No"
72
+ ],
73
+ "Partner": [
74
+ "Yes",
75
+ "Yes",
76
+ "No"
77
+ ],
78
+ "PaymentMethod": [
79
+ "Bank transfer (automatic)",
80
+ "Electronic check",
81
+ "Bank transfer (automatic)"
82
+ ],
83
+ "PhoneService": [
84
+ "Yes",
85
+ "Yes",
86
+ "Yes"
87
+ ],
88
+ "SeniorCitizen": [
89
+ 0,
90
+ 0,
91
+ 0
92
+ ],
93
+ "StreamingMovies": [
94
+ "No",
95
+ "No",
96
+ "No"
97
+ ],
98
+ "StreamingTV": [
99
+ "No",
100
+ "Yes",
101
+ "No"
102
+ ],
103
+ "TechSupport": [
104
+ "No",
105
+ "No",
106
+ "Yes"
107
+ ],
108
+ "TotalCharges": [
109
+ 5730.7,
110
+ 1378.25,
111
+ 4111.35
112
+ ],
113
+ "gender": [
114
+ "Female",
115
+ "Female",
116
+ "Male"
117
+ ],
118
+ "tenure": [
119
+ 72,
120
+ 16,
121
+ 63
122
+ ]
123
+ },
124
+ "model": {
125
+ "file": "churn.pkl"
126
+ },
127
+ "task": "tabular-classification"
128
+ }
129
+ }
confusion_matrix.png ADDED