File size: 4,132 Bytes
ce64551
 
 
d73c5d8
ce64551
 
 
58c81e4
ce64551
 
7888245
c9da6fd
2de07e1
 
 
 
 
ce64551
 
 
 
 
 
 
d73c5d8
ce64551
 
 
 
 
 
d481051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce64551
 
 
 
 
 
 
d73c5d8
ce64551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
- rajistics/indian_food_images
metrics:
- accuracy
widget:
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/003.jpg
  example_title: Fried Rice
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/126.jpg
  example_title: Paani Puri
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/401.jpg
  example_title: Chapathi
model-index:
- name: finetuned-indian-food
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: indian_food_images
      type: imagefolder
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9521785334750266
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: rajistics/indian_food_images
      type: rajistics/indian_food_images
      config: rajistics--indian_food_images
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8257173219978746
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.8391547623590003
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.8257173219978746
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.8437849242516663
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.8199909093335551
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.8257173219978746
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.8257173219978746
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.8207881196755944
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.8257173219978746
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.8256340007731109
      verified: true
    - name: loss
      type: loss
      value: 0.6241679787635803
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-indian-food

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2139
- Accuracy: 0.9522

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0846        | 0.3   | 100  | 0.9561          | 0.8555   |
| 0.7894        | 0.6   | 200  | 0.5871          | 0.8927   |
| 0.6233        | 0.9   | 300  | 0.4447          | 0.9107   |
| 0.3619        | 1.2   | 400  | 0.4355          | 0.8937   |
| 0.34          | 1.5   | 500  | 0.3712          | 0.9118   |
| 0.3413        | 1.8   | 600  | 0.4088          | 0.8916   |
| 0.3619        | 2.1   | 700  | 0.3741          | 0.9044   |
| 0.2135        | 2.4   | 800  | 0.3286          | 0.9160   |
| 0.2166        | 2.7   | 900  | 0.2758          | 0.9416   |
| 0.1557        | 3.0   | 1000 | 0.2679          | 0.9330   |
| 0.1115        | 3.3   | 1100 | 0.2529          | 0.9362   |
| 0.1571        | 3.6   | 1200 | 0.2360          | 0.9469   |
| 0.1079        | 3.9   | 1300 | 0.2139          | 0.9522   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1