rajistics commited on
Commit
74e1012
1 Parent(s): 31d51fe

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_200
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: train
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9033923303834809
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9169161676646707
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9101040118870729
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9121392190152802
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_200
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.4529
47
+ - Precision: 0.9034
48
+ - Recall: 0.9169
49
+ - F1: 0.9101
50
+ - Accuracy: 0.9121
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 3000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 6.25 | 250 | 1.0785 | 0.6815 | 0.7575 | 0.7175 | 0.7780 |
82
+ | 1.3902 | 12.5 | 500 | 0.5871 | 0.8542 | 0.8683 | 0.8612 | 0.8604 |
83
+ | 1.3902 | 18.75 | 750 | 0.4572 | 0.8728 | 0.8937 | 0.8831 | 0.8905 |
84
+ | 0.298 | 25.0 | 1000 | 0.3947 | 0.8936 | 0.9117 | 0.9026 | 0.9092 |
85
+ | 0.298 | 31.25 | 1250 | 0.3925 | 0.8982 | 0.9177 | 0.9078 | 0.9117 |
86
+ | 0.1023 | 37.5 | 1500 | 0.4290 | 0.8908 | 0.9102 | 0.9004 | 0.9041 |
87
+ | 0.1023 | 43.75 | 1750 | 0.4220 | 0.8980 | 0.9162 | 0.9070 | 0.9117 |
88
+ | 0.0475 | 50.0 | 2000 | 0.4755 | 0.8944 | 0.9064 | 0.9004 | 0.8990 |
89
+ | 0.0475 | 56.25 | 2250 | 0.4635 | 0.8992 | 0.9147 | 0.9069 | 0.9070 |
90
+ | 0.0296 | 62.5 | 2500 | 0.4475 | 0.9019 | 0.9154 | 0.9086 | 0.9117 |
91
+ | 0.0296 | 68.75 | 2750 | 0.4484 | 0.9004 | 0.9139 | 0.9071 | 0.9079 |
92
+ | 0.0242 | 75.0 | 3000 | 0.4529 | 0.9034 | 0.9169 | 0.9101 | 0.9121 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.21.2
98
+ - Pytorch 1.12.1+cu113
99
+ - Datasets 2.4.0
100
+ - Tokenizers 0.12.1